首页|沥青混凝土心墙砂砾石坝的地震响应预测模型与应用

沥青混凝土心墙砂砾石坝的地震响应预测模型与应用

扫码查看
尽管深度学习已被广泛用于预测结构的非线性地震响应,但网络框架的搭建方式和超参数的选取等仍是一个颇有争议的话题,会出现计算效率偏低、预测不精准等问题.沥青混凝土心墙砂砾石坝地震响应是一种时间序列数据,可采用时序预测模型挖掘其规律并进行预测.鉴于此,本文提出一种基于遗传粒子群(GAPSO)算法优化的长短时记忆神经网络(LSTM)模型,克服传统网络结构超参数难以确定而导致预测精度偏低等问题,达到能准确预测沥青混凝土心墙砂砾石坝非线性地震响应的目的.与CNN、LSTM单一神经网络模型及未经GA算法优化的PSO-LSTM神经网络模型的预测精度进行对比分析,结果表明:相比于其他传统网络模型,本文提出的 GAPSO-LSTM 网络模型对沥青混凝土心墙砂砾石坝的地震响应有更高的预测精度,克服了人为主观选取超参数的盲目性,缓解了PSO算法局部收敛等问题,为沥青混凝土心墙砂砾石坝的抗震性能评估提供了一种新思路.
Seismic response prediction model of asphalt concrete core sand-gravel dams and its application
Although deep learning has been widely used to predict the nonlinear seismic response of structures,how to construct its network framework and how to select its hyperparameters are still controversial issues,because either of them may lead to problems such as low computational efficiency and low-accuracy predictions.The seismic response of asphalt concrete core sand-gravel(ACCSG)dams is usually depicted by a data series,which can actually be mined and predicted by a time series prediction model.This paper presents a long short-term memory(LSTM)neural network model that is based on the genetic algorithm(GA)and the particle swarm optimization(PSO)algorithm.This GAPSO-LSTM model overcomes the drawback of low prediction accuracy caused by difficulty in determining the hyperparameters of the traditional network structure,and achieves the accurate prediction goal of the nonlinear dynamic response of an ACCSG dam.Its prediction accuracy is compared with the convolutional neural network(CNN)model,LSTM single neural network model,and PSO-LSTM neural network model without GA optimization.The results show that compared with the other network models,the GAPSO-LSTM network model has higher prediction accuracy for the seismic response of an ACCSG dam.It overcomes the blindness of subjective selection of hyperparameters,and relieves the local convergence problem of the PSO algorithm,thus providing a new idea for seismic performance evaluation of ACCSG dams.

asphalt concrete core sand-gravel damseismic response predictionlong short-term memorygenetic algorithmparticle swarm optimization algorithmtime series

杜敏、张社荣、王超、路彤

展开 >

昆明理工大学 建筑工程学院,昆明 650500

天津大学 水利工程智能建设与运维全国重点实验室,天津 300350

天津大学 建筑工程学院,天津 300350

沥青混凝土心墙砂砾石坝 地震响应预测 长短时记忆网络 遗传算法 粒子群算法 时间序列

2025

水力发电学报
中国水力发电工程学会

水力发电学报

北大核心
影响因子:0.801
ISSN:1003-1243
年,卷(期):2025.44(1)