首页|基于灰色RBF神经网络组合模型的交通量预测研究

基于灰色RBF神经网络组合模型的交通量预测研究

扫码查看
根据新陈代谢灰色模型和RBF神经网络模型各自的特点,构造一种新陈代谢灰色模型与RBF神经网络模型组合的平面型模型,模型对无检测器公路的交通量具有较好的预测能力,并用实地调查的数据进行仿真和比较。验证此模型具有较高的精度,从而证明这一模型的可行性和有效性。
Research of Traffic Volume Forecasting Based on Grey RBF Neural Network Combination Model
A plane model that combines Metabolic Grey Model and RBF Neural Network was established in the paper according to the features of Metabolic Grey Model and RBF Neural Network. The model has better forecasting ability for the traffic volume on the highways without detectors. The actual survey data was entered into the model to conduct a simulation. The comparison result showed that the model has a higher precision and was proved to be feasible and effective in the forecasting of highway traffic volume.

Grey TheoryRBF neural networkmetabolismcombination modeltraffic volumeforecasting

王旭、周旭

展开 >

东北林业大学土木工程学院,哈尔滨150040

灰色理论 RBF神经网络 新陈代谢 组合模型 交通量 预测

2012

森林工程
东北林业大学

森林工程

CSTPCD
影响因子:1.443
ISSN:1001-005X
年,卷(期):2012.28(4)
  • 3
  • 7