首页|基于MSIWOA算法的SLS聚酰胺制件工艺参数优化

基于MSIWOA算法的SLS聚酰胺制件工艺参数优化

扫码查看
以聚酰胺粉末为实验材料,以力学性能为评价目标,研究了激光功率、扫描间距、摆放角度及他们两两交互作用对选择性激光烧结(SLS)制件抗拉强度的影响,通过扫描电镜观察断口形貌揭示了工艺参数对制件成型的影响机理,通过响应面设计得到了工艺参数与抗拉强度间的回归方程,分析了模型的有效性与准确性.以回归方程为目标函数,使用混合策略改进的鲸鱼优化(MSIWOA)算法进行SLS制件抗拉强度的优化,得到最优工艺参数,并与鲸鱼优化(WOA)算法的优化结果及实验验证结果进行比对.结果表明,MSIWOA算法对SLS聚酰胺制件工艺参数的优化具有较高的准确性和较好的可行性,可为SLS制件力学性能的提升提供技术方法.
Optimization of Process Parameters for SLS Polyamide Parts Based on MSIWOA
Polyamide powders were utilized as the test material to assess the mechanical properties of selective laser sintering(SLS)parts.The investigations focused on the influences of laser power,scanning spacing,placing angle,and their pairwise interactions on the tensile strength of the parts.The influence mechanisms of process parameters on the part forming were revealed by the observation of fracture morphology using a scanning electron microscope.Moreover,the regression equations between the process parameters and tensile strength were obtained via a response surface design,assessing the model's validity and accuracy.Subsequently,the regression equations were taken as the objective functions.The mixed-strategy-based improved whale optimization algorithm(MSIWOA)was employed to optimize the tensile strength of SLS parts,and the optimal process parameters were compared with the results from the whale optimization algorithm(WOA)and experimental data.The results show that the MSIWOA exhibits higher accuracy and feasibility in optimizing the process parameters of SLS polyamide parts,offering technical methods for enhancing the mechanical properties of SLS parts.

PolyamideSelective Laser SinteringOptimization of Process ParameterMixed-Strategy-Based Improved Whale Optimization Algorithm

赵静、王超、范恒亮、罗殿宇、孙薇薇、丁国华、李宇航、彭浩杰

展开 >

蚌埠学院机械与车辆工程学院,安徽 蚌埠 233030

安徽省增材制造工程研究中心,安徽 蚌埠 233030

安徽科技学院机械工程学院,安徽 滁州 233100

聚酰胺 选择性激光烧结 工艺参数优化 MSIWOA

安徽省高等学校科学研究重点项目安徽省高等学校科学研究重点项目安徽省高等学校协同创新项目安徽省高等学校协同创新项目安徽省高等学校协同创新项目安徽省高等学校协同创新项目蚌埠市科技计划

2023AH0529322023AH052937GXXT-2023-025GXXT-2023-028GXXT-2023-029GXXT-2023-0992023gx09

2024

塑料工业
中蓝晨光化工研究院有限公司

塑料工业

CSTPCD北大核心
影响因子:0.685
ISSN:1005-5770
年,卷(期):2024.52(5)