首页|基于多层感知机模型的熔融沉积尺寸误差预测方法

基于多层感知机模型的熔融沉积尺寸误差预测方法

扫码查看
熔融沉积成型(FDM)或熔丝制造(FFF),是当下最常见和广泛使用的 3D打印技术之一,可用于制造各种功能性构件.然而,FDM(FFF)制件普遍存在尺寸精度低、表面质量差、易翘曲和机械强度不足等现象.目前普遍采用工艺参数优化方法来解决这些问题,但往往需要大量的实验工作和复杂的数据处理.因此,本文以碳纤维增强复合材料的熔融沉积3D打印为例,提出一种基于多层感知机(MLP)模型的FDM(FFF)尺寸误差预测方法.实验结果表明,通过采用 4 个隐藏层数、神经元节点数常规设计的4-Layers-a网络结构,MLP模型能够实现对尺寸误差的预测,准确率均达到 95%以上,可有效应用于FDM(FFF)的工艺参数优化.
Dimension Error Predictions in the Fused Deposition Modeling Based on the Multilayer Perceptron Model
Nowadays,the fused deposition modeling(FDM)or fused filament fabrication(FFF)is one of the most common and widely used 3D printing technologies,which could be used to manufacture various functional components.However,part defects of low dimensional accuracy,poor surface quality,susceptibility to warping,and insufficient mechanical strength often occur after printing.These problems are usually solved by optimizing the process parameters,but extensive experiments and complex data processing works are required.Therefore,taking the 3D printing of carbon fiber-reinforced composites as the example,this paper proposed a dimension error prediction method in FDM(FFF)based on the multilayer perceptron(MLP)model.The experimental results indicate that by using the 4-Layers-a network structure with four hidden layers and a conventional design of neuroses,the MLP model could predict the size error.The error prediction accuracy is over95%,meaning that the4-Layers-a MLP model is an effective tool to be employed in the process parameter optimizations for FDM(FFF).

Fused Deposition ModelingMultilayer PerceptionMachine LearningError PredictionParameter Optimization

周逸扬、陈松茂、周建辉

展开 >

华南理工大学机械与汽车工程学院,广东 广州 510640

东莞市卓越电动车有限公司,广东 东莞 523421

熔融沉积成型 多层感知机 机器学习 误差预测 参数优化

广东省自然科学基金资助项目

2018A0303130300

2024

塑料工业
中蓝晨光化工研究院有限公司

塑料工业

CSTPCD北大核心
影响因子:0.685
ISSN:1005-5770
年,卷(期):2024.52(8)
  • 3