首页|基于机器学习预测环氧树脂复合材料抗冲击性能

基于机器学习预测环氧树脂复合材料抗冲击性能

扫码查看
剩余压缩强度(RCS)是评价复合材料受到冲击损伤后力学性能的重要指标.采用声发射技术(AE)对玻璃纤维增强环氧树脂复合材料冲击载荷进行了在线监测,分析了振铃计数、峰值计数、信号强度和信号均方根值 4 种冲击载荷参数,采用人工神经元网络(ANN)和径向基网络(RBF)基于冲击载荷参数预测了试件RCS.结果表明,高冲击能量造成了试件分层、玻璃纤维断裂、环氧树脂基体开裂、纤维脱黏,当冲击能量为10、15、20 和30J时,冲击3ms后冲击能量达到最大值,分别为 10.53、16.67、21.77 和 27.13 J,随后冲击能量不断下降.随着冲击能量的增加,试件冲击深度从 0.18 mm增加到 3.35 mm,RCS从 56.87 MPa降低到 20.45 MPa.最优ANN模型结构为 4-48-1,预测和实验RCS的均方误差(MSE)最低为 0.03 MPa,最优RBF模型结构为 4-21-1,MSE最低为 0.01.RBF模型的局部响应特性使得其对输入数据中的噪声具有较好的鲁棒性,预测与实验RCS数据的相关系数(R2)为 0.986 3,而ANN模型预测结果为 0.951 4.
Predicting the Impact Resistance of Epoxy Resin Composite Materials by Machine
Residual compressive strength(RCS)is an important indicator for evaluating the mechanical properties of composite materials after impact damages.The impact load of glass fiber reinforced epoxy resin composite materials was monitored online using acoustic emission(AE)technology.Four impact load parameters,including counts,counts to peak,signal strength,and root means square value were analyzed.The RCS of the specimen was predicted based on the impact load parameters using artificial neural network(ANN)and radial basis function network(RBF).The results show that the high impact energy causes the delamination of the specimen,glass fiber fracture,epoxy resin matrix cracking,and fiber debonding.When the impact energy is respectively 10,15,20 and 30 J,the impact energy reaches its maximum after 3 ms of impact,which is respectively 10.53,16.67,21.77 and 27.13 J.Then the impact energy continues to decrease.As the impact energy increases,the impact depth of the specimen increases from 0.18 mm to 3.35 mm,and RCS decreases from 56.87 MPa to 20.45 MPa.The optimal ANN model structure is 4-48-1,with a minimum mean square error(MSE)of 0.03 MPa for predicted and experimental RCS.The optimal RBF model structure is 4-21-1,with a minimum MSE of 0.01.The local response characteristics of the RBF model make it more robust to noise in the input data.The correlation coefficient(R2)between the predicted and experimental RCS data is 0.986 3,while the predicted result of ANN model is 0.951 4.

Radial Basis FunctionArtificial Neural NetworkEpoxy Resin Composite MaterialAcoustic EmissionResidual Compressive Strength

伍宝华、关留祥、方秀苇

展开 >

河南质量工程职业学院质量科学研究中心,河南 平顶山 467000

中原工学院纺织学院,河南 郑州 451191

河南质量工程职业学院食品与化工学院,河南 平顶山 467000

径向基网络 人工神经元网络 环氧树脂复合材料 声发射 剩余压缩强度

中国纺织工业联合会科技指导性计划项目

2021043

2024

塑料工业
中蓝晨光化工研究院有限公司

塑料工业

CSTPCD北大核心
影响因子:0.685
ISSN:1005-5770
年,卷(期):2024.52(10)