首页|基于粒子群优化算法的灰色预测模型在湖泊水位中的预测研究

基于粒子群优化算法的灰色预测模型在湖泊水位中的预测研究

扫码查看
湖泊水位对于保障区域供水安全、防洪减灾等方面具有重要意义。为了提高湖泊水位预测的精度和可靠性,针对传统灰色预测模型在对非线性和不确定性数据序列时预测精度下降的问题,提出一种基于粒子群优化算法(PSO)的改进灰色预测模型。通过采用粒子群优化算法来寻找最优参数组合,改进灰色预测模型的参数估计和反算方法,将改进后的模型应用于湖泊水位的预测,通过与BP神经网络模型进行比较,验证研究模型在短期预测精度上的优越性。研究结果不仅为湖泊水位预测提供一种新的高效方法,同时也为粒子群算法在环境科学领域的应用拓宽路径,为湖泊水资源的科学管理和决策提供参考。
Research on Grey Prediction Model Based on Particle Swarm Optimization Algorithm for Predicting Lake Water Level
The water level of lakes is of great significance for ensuring regional water supply safety,flood control and disaster reduction.In order to improve the accuracy and reliability of lake water level prediction,an improved grey prediction model based on particle swarm optimization algorithm(PSO)is proposed to address the problem of decreased prediction accuracy of traditional grey prediction models when facing nonlinear and uncertain data sequences.By using particle swarm optimization algorithm to find the optimal parameter combination,improving the parameter estimation and backcalculation methods of the grey prediction model,the improved model was applied to predict lake water level.By comparing with the BP neural network model,the superiority of this research model in short-term prediction accuracy was verified.Not only does it provide a new and efficient method for predicting lake water levels,but it also broadens the path for the application of particle swarm optimization in the field of environmental science,providing valuable references for the scientific management and decision-making of lake water resources.

particle swarm optimization algorithmgrey predictionlake water levelBP neural network

许诺、张志来、潘鑫、陈凯

展开 >

江苏省洪泽湖水利工程管理处,江苏 淮安 223000

粒子群优化算法 灰色预测 湖泊水位 BP神经网络

2024

水利科技与经济
哈尔滨市水务科学研究院 哈尔滨市水利规划设计研究院 哈尔滨市水利学会

水利科技与经济

影响因子:0.274
ISSN:1006-7175
年,卷(期):2024.30(12)