首页|基于Blending-Clustering集成学习的大坝变形预测模型

基于Blending-Clustering集成学习的大坝变形预测模型

扫码查看
[目的]变形是反映大坝结构性态最直观的效应量,构建科学合理的变形预测模型是保障大坝安全健康运行的重要手段。针对传统大坝变形预测模型预测精度低、误报率高等问题导致的错误报警现象,[方法]选取不同预测模型和聚类算法集成,构建了一种Blending-Clustering集成学习的大坝变形预测模型,该模型以Blending对单一预测模型集成提升预测精度为核心,并通过Clustering聚类优选预测值改善模型稳定性。以新疆某面板堆石坝变形监测数据为实例分析,通过多模型预测性能比较,对所提出模型的预测精度和稳定性进行全面评估。[结果]结果显示:Blending-Clustering模型将预测模型和聚类算法集成,均方根误差(RMSE)和归一化平均百分比误差(nMAPE)明显降低,模型的预测精度得到显著提高;回归相关系数(R2)得到提升,模型具备更强的拟合能力;在面板堆石坝上22个测点变形数据集上的预测评价指标波动范围更小,模型的泛化性和稳定性得到有效增强。[结论]结果表明:Blending-Clustering集成预测模型对于预测精度、泛化性和稳定性均有明显提升,在实际工程具有一定的应用价值。
Dam deformation prediction model based on Blending-Clustering ensemble learning
[Objective]Deformation is the most intuitive effect size to reflect the structural properties and morphological changes of the dam.It is an important means that constructing a scientific and reasonable deformation prediction model to ensure the safe and healthy operation of the dam.Aiming at the false alarm phenomenon caused by the low prediction accuracy and high false positive rate of traditional dam deformation prediction models,[Methods]a dam deformation prediction model based on Blending Blending-Clustering ensemble learning is constructed by selecting different prediction models and clustering algorithms.The core of the model is to improve the prediction accuracy of single prediction models by Blending.The stability of the model is improved by clustering optimization prediction values by Clustering.Taking the deformation monitoring data of a faced rockfill dam in Xin-jiang as an example,the prediction accuracy and stability of the proposed model are comprehensively evaluated by comparing the prediction performance of multiple models.[Results]The result show that root mean square error(RMSE)and normalization mean absolute percentage error(nMAPE)of the Blending-clustering model are significantly reduced by the integration of the pre-diction model and Clustering algorithm and the prediction accuracy of the model is significantly improved.The regression correla-tion coefficient(R2)is improved and the model had stronger fitting ability.The fluctuation range of the prediction and evaluation indexes on the multi-point deformation data set of a faced rockfill dam is smaller,and the generalization and stability of the model are effectively enhanced.[Conclusion]The result indicate that the Blending-Clustering prediction model can significantly improve the prediction accuracy,generalization and stability,and has certain application value for practical engineering.

damdeformationprediction modelBlending integrationClustering integrationmodel combination

冯子强、李登华、丁勇

展开 >

南京理工大学理学院,江苏南京 210094

南京水利科学研究院,江苏南京 210029

水利部水库大坝安全重点实验室,江苏南京 210029

大坝 变形 预测模型 Blending集成 Clustering集成 模型融合

国家重点研发计划国家自然科学基金中央级公益性科研院所基本科研业务费专项

2022YFC300550251979174Y321004

2024

水利水电技术(中英文)
水利部发展研究中心

水利水电技术(中英文)

CSTPCD北大核心
影响因子:0.456
ISSN:1000-0860
年,卷(期):2024.55(4)
  • 31