首页|基于PIE-Engine云计算平台和CASA模型的植被NPP时空动态遥感监测:以道孚县为例

基于PIE-Engine云计算平台和CASA模型的植被NPP时空动态遥感监测:以道孚县为例

扫码查看
[目的]为深入了解道孚县的植被固碳水平以及其长期变化趋势,[方法]以MODIS数据、站点气象和土地覆盖等资料为基础,通过PIE-Engine遥感云计算平台建立了 CASA模型,估算了2001-2016年道孚县陆地植被净初级生产力(NPP)。同时,结合Theil-Sen Median趋势分析、稳定性分析、分区统计和冷热点分析等手段,探讨了其时空分布和演变特征。[结果]结果显示:(1)基于PIE-Engine云平台模型和CASA模型估算的道孚县2001-2016年的NPP,其精度较高并与MODIS NPP数据有良好的拟合效果。(2)道孚县NPP呈持续上升趋势,其中中部和东南部NPP较高,东北部和中南部NPP较低,同时NPP的低值区正在逐年减少,反映出该地区生态状况正在逐渐改善。(3)所有乡镇的NPP在2001-2016年间均有增长,NPP的空间变化整体稳定,大部分地区NPP波动较小。(4)道孚县的NPP在2001-2016年间总体显著增长,增长区域面积占全县的93%以上。(5)高NPP值区域在空间上形成聚类,"热点"现象明显,这为进一步研究和理解NvPP的空间分布和变化规律提供了依据。[结论]研究成果为道孚县的生态环境改善和持续发展提供了科学依据,并提出了一种基于云平台的快速、高效的区域植被NPP评估方法,这对于全面评估可持续发展目标和推动生态文明建设具有积极意义。
Remote sensing monitoring of vegetation NPP spatiotemporal dynamics based on the PIE-Engine cloud computing platform and CASA model:A case study of Daofu County
[Objective]To gain a deeper understanding of the carbon sequestration levels of vegetation in Daofu County and its long-term trends,[Methods]the CASA model through the PIE-Engine remote sensing cloud computing platform based on MODIS data was established,meteorological station data,and land cover data,estimating the Net Primary Productivity(NPP)of terres-trial vegetation in Daofu County from 2001 to 2016.Concurrently,the spatiotemporal distribution and evolutionary characteristics were explored using method such as Theil-Sen Median trend analysis,stability analysis,zonal statistics,and hotspot analysis.[Results]The findings indicate:(1)The NPP of Daofu County from 2001 to 2016,estimated based on the PIE-Engine cloud platform and CASA model,demonstrated high accuracy with a good fit with MODIS NPP data.(2)The NPP in Daofu County has been continuously increasing,with higher NPP in the central and southeastern parts,and lower NPP in the northeastern and south-central parts.The areas with low NPP values are gradually decreasing year by year,reflecting a gradual improvement in the ecological condition of the region.(3)All townships experienced an increase in NPP from 2001 to 2016,with spatial variations in NPP generally stable and most areas experiencing small fluctuations in NPP.(4)Overall,there was a significant increase in NPP in Daofu County between 2001 and 2016,with the growing areas covering over 93%of the entire county.(5)High NPP value areas have formed spatial clusters,creating prominent hotspot phenomena,providing a basis for further studying and under-standing the spatial distribution and changing patterns of NPP.[Conclusion]The study offers a scientific basis for the improve-ment of the ecological environment and sustainable development in Daofu County.Moreover,it proposes a fast and efficient re-gional vegetation NPP assessment method based on a cloud platform,which holds positive value for comprehensively evaluating sustainable development goals and promoting ecological civilization construction.

vegetation Net Primary Productivity(NPP)CASA modelPIE-Enginespatiotemporal distributionremote senseDaofu County

曾见闻、戴晓爱、徐纪鹏、李雯雨、刘东升

展开 >

成都理工大学地球科学学院,四川成都 610059

航天宏图信息技术股份有限公司,北京 100195

植被净初级生产力NPP CASA模型 PIE-Engine 时空分布 遥感 道孚县

四川省教育厅人文社会科学(张大千研究)科研重点项目大学生创新创业训练计划项目大学生创新创业训练计划项目教育部产学合作协同育人项目四川省高等学校人文社会科学重点研究基地四川省教育信息化应用与发展研究中心项目成都理工大学2021-2023年高等教育人才培养质量和教学改革项目成都理工大学2021年中青年骨干教师发展资助计划项目

ZDQ2021-1s202210616003202210616006220802313174310JYXX21-003JG213000910912-JXGG2021-00879

2024

水利水电技术(中英文)
水利部发展研究中心

水利水电技术(中英文)

CSTPCD北大核心
影响因子:0.456
ISSN:1000-0860
年,卷(期):2024.55(5)