首页|基于CNN-Attention-LSTM的大坝变形预测模型

基于CNN-Attention-LSTM的大坝变形预测模型

扫码查看
[目的]预测大坝变形以规避风险是大坝变形监测的重点,一个可靠的预测模型可以洞察大坝未来变形趋势。为了更好地预测大坝的变形,提高预测精度和计算效率,[方法]提出了一种基于卷积神经网络(CNN)、注意力机制(Attention)和长短时记忆网络(LSTM)的大坝监测模型。CNN从监测数据中提取特征,LSTM更好地从时间序列数据中学习,并在此CNN-LSTM模型的基础上,耦合深度学习算法Attention机制,突出特征对输入效果的影响,在不影响模型精度的前提下提高计算速度,进一步提高模型预测精度与稳定性。同时,结合工程实例进行了应用分析。[结果]结果显示,所建模型能够精确预测大坝变形,在各点位测试集上平均R2、MAE、RMSE、MSE和MAPE分别为0。989 mm、0。337 mm、0。469 mm、0。252 mm和13。918%。[结论]结果表明:所建模型具有较好的变形预测能力和适用性,相较于CNN、LSTM、CNN-LSTM、Attention-LSTM模型,该模型具有较好的MAE、RMSE、MSE、MAPE和R2等指标,并提高了计算效率,更适合大坝变形的预测。
Dam deformation prediction model based on CNN-Attention-LSTM
[Objective]Predicting dam deformation to avoid risks is the focus of dam deformation monitoring,and a reliable predicting model can provide insights into the future deformation trend of the dam.In order to better predict the deformation of the dam and improve prediction accuracy and calculation efficiency,[Methods]this paper proposes a dam monitoring model based on Convolutional Neural Network(CNN),attention mechanism(Attention)and Long Short-Term Memory network(LSTM).CNN extracts features from monitoring data,and LSTM learns better from time series data.Based on this CNN-LSTM model,Attention mechanism,one type of deep learning algorithm,is coupled to highlight the impact of features on the input effect without affecting the accuracy of the model.On the premise of improving the calculation speed,further improving the model prediction accuracy and stability.Through engineering example analysis,[Results]the model proposed in this arti-cle can accurately predict dam deformation.The average R2,MAE,RMSE,MSE and MAPE on the test set at each point are 0.989,0.337 mm,0.469 mm,0.252 mm and 13.918%respectively.[Conclusion]The result show that the built model has better deformation prediction ability.Compared with CNN,LSTM,CNN-LSTM,and Attention-LSTM models,this model has better MAE,RMSE,MSE,MAPE,and R2,etc.indicators,and improves computational efficiency,making it more suitable for the prediction of dam deformation.

deformation predictionconvolutional neural networklong short-term memoryattention mechanisminfluencing factors

施彦彤、郑东健、赵汉、周新新

展开 >

河海大学水利水电学院,江苏南京 210098

河海大学水文水资源与水利工程科学国家重点实验室,江苏南京 210098

变形预测 卷积神经网络 长短时记忆网络 注意力机制 影响因素

国家自然科学基金项目

52179128

2024

水利水电技术(中英文)
水利部发展研究中心

水利水电技术(中英文)

CSTPCD北大核心
影响因子:0.456
ISSN:1000-0860
年,卷(期):2024.55(9)