首页|机器学习赋能智慧水利的现实基础、应用现状及发展前景

机器学习赋能智慧水利的现实基础、应用现状及发展前景

扫码查看
[目的]为全面概述机器学习在智慧水利中的应用与发展,突出其在推进水利行业智慧化中的核心价值。[方法]全面综述了国内外相关研究,通过对比分析与总结归纳,明确了机器学习赋能智慧水利的现实基础、应用现状及发展前景。[结果]机器学习在水资源供需预测与调度优化、水灾风险管理和防洪调度、水质监测与预报、水文过程模拟与预报等场景下均有较为广泛的应用。其中,神经网络是应用最多的机器学习算法,水质监测与预报是机器学习主要的应用场景。未来,机器学习将在改进预测模型、优化预警系统、预演反向溯源和支持预案制定等方面助力完善智慧水利的"四预"功能,加快建设水资源管理与调配应用体系,提高水利行业的管理效率和决策科学性。[结论]研究能够为相关领域学者提供全面而深入的技术参考。
The practical foundation,current application status,and future prospects for the integration of machine learning in empowering intelligent water conservancy
[Objective]To provide a comprehensive overview of the applications and developments of machine learning in smart water management,this article thoroughly reviews relevant research both domestically and internationally.[Methods]Through comparative analysis and summarization,it elucidates the practical foundation,current applications,and future prospects of ma-chine learning in advancing the intelligence of the water management industry.[Results]Machine learning has been extensively applied in scenarios such as water resource supply and demand forecasting,optimization of scheduling,water disaster risk man-agement and flood control,water quality monitoring and forecasting,as well as hydrological process simulation and prediction.Among these,neural networks are the most commonly used machine learning algorithm,and water quality monitoring and forecas-ting constitute the primary application fields.In the future,machine learning will enhance the"prediction-early warning-preven-tion-contingency plan"functionalities of smart water management by improving prediction models,optimizing early warning sys-tems,conducting retrospective root cause analyses,and aiding in contingency planning.These advancements will expedite the construction of water resource management and allocation application systems,thereby enhancing the efficiency and scientific nature of decision-making in the water management industry.[Conclusion]This article serves as a comprehensive and in-depth technical reference for scholars in related fields.

machine learningartificial intelligence algorithmsmart water managementdata drivenwater resourceswater quality

杨晶、路恒通、金鑫、产青青、张家旋、杨一帆、李思敏

展开 >

河北工程大学 水利水电学院,河北 邯郸 056038

河北工程大学 能源与环境工程学院,河北 邯郸 056038

河北工程大学 河北省智慧水利重点实验室,河北 邯郸 056038

河北工程大学 河北省水污染控制与水生态修复技术创新中心,河北 邯郸 056038

重庆大学 计算机学院,重庆 400044

展开 >

机器学习 人工智能算法 智慧水利 数据驱动 水资源 水质

2024

水利水电技术(中英文)
水利部发展研究中心

水利水电技术(中英文)

CSTPCD北大核心
影响因子:0.456
ISSN:1000-0860
年,卷(期):2024.55(10)