首页|基于InfoWorks ICM与LSTM的城市河道水位预报方法研究

基于InfoWorks ICM与LSTM的城市河道水位预报方法研究

扫码查看
[目的]城市内河水位预报对城市内涝风险管理具有重要意义,但是沿海地区城市水系构成复杂,传统数值模拟模型计算效率较低,无法实现实时计算。[方法]针对以上问题,以城市综合流域排水模型(InfoWorks ICM)构建的水文水动力模型数据作为数据驱动,综合考虑降雨、城市地表高程(DEM)、土地利用以及街道分布与排水管网布设情况,构建基于机器学习方法的城市河道水位预报神经网络模型(LSTM)。以福州市晋安河—光明港流域为例,开展算例研究。[结果]结果表明:该模型对城市河道水位预报48h预见期内的平均纳什效率系数(MNSE)均达到0。7以上,预报精度达到乙级,预报峰值水位误差均小于3%。[结论]模型能够提供可靠的河道水位演进过程与峰值水位预报结果,表明所构建的模型具有良好的预测性能,可用于城区河网水位快速预报。
Research of urban river level forecast method based on InfoWorks ICM and LSTM
[Objective]The prediction of urban river water level is of great significance for the management of urban waterlogging risk.However,the urban water system in coastal areas is complex,and traditional numerical simulation models have low compu-tational efficiency and cannot achieve real-time calculation.[Methods]In response to the above issues,this article uses the water culture and hydrodynamic model data constructed by the Urban Integrated Basin Drainage Model(InfoWorks ICM)as a data-driven approach.Taking into account rainfall,urban surface elevation(DEM),land use,street distribution,and drainage net-work layout,an LSTM urban river water level prediction neural network model based on machine learning method is constructed.Taking the Jin'an River to Guangminggang Basin in Fuzhou City as an example,a case study is conducted.[Results]The results show that the average Nash efficiency coefficient(MNSE)of the model for predicting urban river water level during the 48 hour foresight period is above 0.7,the prediction accuracy reaches level B,and the error of peak water level prediction is less than 3%.[Conclusion]The model can provide reliable river water level evolution process and peak water level prediction result,indi-cating that the constructed model has good predictive performance and can be used for rapid water level prediction in urban river networks.

InfoWorks ICMLSTMflood forecasturban river networkurban waterloggingjoint scheduling of multiple gate pumpsFuzhou City

蒋双林、王超、陈阳、董鑫

展开 >

江苏大学流体机械工程技术研究中心,江苏镇江 212013

中国水利水电科学研究院水资源研究所,北京 100038

东北大学资源与土木工程学院,辽宁沈阳 110819

福州大学土木工程学院,福建 福州 350108

展开 >

InfoWorks ICM模型 LSTM模型 洪水预报 城区河网 城市内涝 多闸泵联合调度 福州市

2024

水利水电技术(中英文)
水利部发展研究中心

水利水电技术(中英文)

CSTPCD北大核心
影响因子:0.456
ISSN:1000-0860
年,卷(期):2024.55(12)