首页|基于遗传算法的空箱式挡土墙多目标优化设计

基于遗传算法的空箱式挡土墙多目标优化设计

扫码查看
为高效、准确、自动化地实现空箱结构的优化设计,以空箱式挡土墙为研究对象,基于Python语言和ABAQUS软件进行参数化建模,实现了结构建模及有限元计算分析全套流程的自动化.结合某水闸工程中的一座空箱式挡土墙结构,以多个强度和稳定性指标的最优化和混凝土体积的最小化为目标,以规范要求的指标阈值、几何尺寸和体积限制为约束条件,采用非支配排序遗传算法(NSGA-Ⅱ算法)进行空箱式挡土墙多目标优化设计.为进一步提高计算效率,基于人工神经网络算法建立了代理模型,实现了与实际有限元模型的高度近似.结果表明,依据所提出的优化设计方法进行空箱式挡土墙多目标优化设计,可以在有效控制强度和稳定性的前提下尽可能地缩减混凝土用量,具有显著的经济效益.
Multi-objective optimal design of a chamber retaining wall based on genetic algorithm
To efficiently,accurately,and automatically achieve the optimized design of hollow structures,a chamber retaining wall was taken as the research object.Parametric modeling based on Python and ABAQUS was carried out,and the automation for the whole process of modeling,finite element calculation and analysis was realized.Combined with a chamber retaining wall in a sluice project,the multi-objective optimization design under multiple constraints was carried out by using non-dominated sorting genetic algorithm(NSGA-Ⅱ algorithm),aiming at the optimal of several strength and stability indexes and the minimization of concrete volume by taking the index threshold,geometric size and volume requirement as constraint conditions.In order to further improve the computational efficiency,a surrogate model was established based on artificial neural network algorithm,which could achieve a highly approximation to the actual finite element model.The results show that the proposed optimization process for chamber retaining walls can minimize concrete usage while effectively controlling strength and stability,and has significant economic benefits.

chamber retaining wallparametric modellingNSGA-Ⅱ algorithmsurrogate modelstructural optimal design

王丽、徐鹏飞、刘松、郭瑞、徐昕、张康

展开 >

淮安市水利勘测设计研究院有限公司,江苏淮安 223001

淮安市水利工程建设管理服务中心,江苏淮安 223005

河海大学水利水电学院,江苏南京 210098

空箱式挡土墙 参数化建模 NSGA-Ⅱ算法 代理模型 结构优化设计

江苏省水利科技项目江苏省水利科技项目中央高校基本科研业务费专项资金资助项目

20210152022024B210202017

2024

水利水电科技进展
河海大学

水利水电科技进展

CSTPCD北大核心
影响因子:0.866
ISSN:1006-7647
年,卷(期):2024.44(2)
  • 14