首页|基于二次模态分解和深度学习的大坝变形预测模型

基于二次模态分解和深度学习的大坝变形预测模型

扫码查看
为充分提取大坝变形监测数据的非线性和非平稳性特征,深度挖掘其前后信息的拓扑关系,有效提高预测精度,提出了 一种基于二次模态分解和蜣螂优化算法的双向长短期记忆神经网络大坝变形预测模型.该模型引入融合自适应噪声完备集成经验模态分解和变分模态分解的二次模态分解对数据进行预处理,有效降低高频非平稳性分量对预测精度的不利影响,并利用蜣螂优化算法对双向长短期记忆神经网络进行超参数寻优以深度挖掘大坝变形数据的有效信息.以某水电站大坝为例,将该模型预测结果与多种常用模型的预测结果进行对比分析,结果表明该模型可有效挖掘大坝变形数据复杂的非线性特征,其预测精度明显优于对比模型,验证了该模型在大坝变形预测中的可行性与优越性.
Dam deformation prediction model based on quadratic modal decomposition and deep learning
In order to fully extract the nonlinear and non-stationary characteristics of the dam deformation monitoring data,deeply mine the topological relationship between the preceding and following information,effectively improve the prediction accuracy,a bidirectional long short-term memory(LSTM)neural network dam deformation prediction model based on quadratic modal decomposition and dung beetle optimization algorithm is proposed.The model introduces a quadratic modal decomposition that combines adaptive noise-complete integrated empirical modal decomposition and variational modal decomposition to preprocess the data,which effectively reduces the negative influence of high-frequency non-stationary components on the prediction accuracy,and utilizes dung-beetle optimization algorithm to search for the optimal hyper-parameters of bidirectional LSTM neural networks to deeply explore the effective information of the deformation data of the dams.Taking a hydropower dam as an example,the prediction results of the model are compared with those of several commonly used models,and the experimental results show that the model can effectively exploit the complex nonlinear features of dam deformation data,and its prediction accuracy is significantly better than its counterparts,and the feasibility and superiority of the model in the prediction of dam deformation is verified.

dam deformation predictionsecondary modal decompositiondung beetle optimization algorithmbidirectional LSTM neural network

刘相杰、刘小生、张龙威

展开 >

江西理工大学土木与测绘工程学院,江西赣州 341000

大坝变形预测 二次模态分解 蜣螂优化算法 双向长短期记忆神经网络

国家自然科学基金

42171437

2024

水利水电科技进展
河海大学

水利水电科技进展

CSTPCD北大核心
影响因子:0.866
ISSN:1006-7647
年,卷(期):2024.44(3)
  • 17