首页|基于格子玻尔兹曼方法的附壁型空化泡演化模拟

基于格子玻尔兹曼方法的附壁型空化泡演化模拟

扫码查看
依托热流耦合格子玻尔兹曼方法,探究了壁面润湿性与液相黏滞系数对附壁型空化泡演化的影响,并基于双粒子分布函数的热流耦合伪势LBM空化模型对接触点开展了受力分析.结果表明:对于润湿性壁面,演化过程中动态接触角持续大于平衡态接触角,导致其产生的非平衡杨氏力在空化泡生长期间产生迟滞效应,而在溃灭期间则加速了接触点的坍缩;对于非润湿性界面,非平衡杨氏力引发的迟滞效应在溃灭初期减缓了空化泡接触点的坍缩,而在最终溃灭阶段由于界面的剧烈形变,非平衡杨氏力加速了接触点坍缩;溃灭时刻微射流体积与平衡态接触角的余弦函数之间存在指数关系;黏滞系数增大会减小微射流体积,同时延长空化泡演化时间.
Simulation on evolution of an attached-wall cavitation bubble based on lattice Boltzmann method
The thermal lattice Boltzmann model was employed to explore wall wettability and liquid viscosity effects on the evolution of an attached-wall cavitation bubble.Force analysis of the contact point was carried out based on the two-particle distribution function of the heat-fluid coupling pseudo-potential LBM cavitation model.It is found that the dynamic contact angle is larger than the equilibrium contact angle throughout the evolution process for a wetting wall,resulting in a hysteresis effect during the growth stage and accelerating the contact point retraction velocity in the collapse stage.For non-wetting walls,the hysteresis effects caused by the unbalanced Young's force slow down the retraction of the contact points in the early collapse stage and accelerate the retraction in the final collapse stage because of the dramatic interface deformation.An exponential relationship exists between the microjet volume and the cosine function of the equilibrium contact angle at the collapse point.Furthermore,the increase in viscosity leads to a decrease in the jet volume at the collapse point and collapse time is delayed.

attached-wall cavitation bubblecontact points dynamicswall wettabilityviscositylattice Boltzmann method

袁浩、詹蝶、宋翔、孙倩

展开 >

重庆交通大学西南水利水运工程科学研究院,重庆 400074

重庆交通大学河海学院,重庆 400074

附壁型空化泡 接触点动力机制 壁面润湿性 黏滞系数 格子玻尔兹曼方法

中国博士后科学基金项目

2022MD723724

2024

水利水电科技进展
河海大学

水利水电科技进展

CSTPCD北大核心
影响因子:0.866
ISSN:1006-7647
年,卷(期):2024.44(4)