首页|基于改进NSGA-Ⅱ算法的梯级水库多目标优化调度

基于改进NSGA-Ⅱ算法的梯级水库多目标优化调度

扫码查看
针对在时间步长较小、计算时段数目较多时,传统智能优化算法在求解梯级水库联合优化调度问题上效率低甚至无可行解的问题,提出了一种改进NSGA-Ⅱ算法.该算法基于NSGA-Ⅱ算法框架,引入参考目标值、潜力目标值、偏移度以及变异引导算子来优化种群进化过程,强化迭代中的种群质量,使获得的解集更加接近真实的Pareto前沿.福建省金溪流域梯级水库多目标优化调度实例验证结果表明,改进NSGA-Ⅱ算法相对其他算法运算效率更高,优化结果更好,具有较好的实用性.
Multi-objective optimal operation of cascade reservoirs based on improved NSGA-Ⅱ algorithm
Conventional intelligent optimization algorithms are inefficient or even impossible in finding feasible solutions to the cascade reservoir optimal operation calculations with small time step and a large number of calculation periods.On this basis,an improved NSGA-Ⅱ algorithm is proposed to solve the problem.Based on the framework of NSGA-Ⅱ algorithm,the improved algorithm introduces reference goal value,potential goal value,offset degree and mutation guiding operator to optimize the population evolution process and to enhance the quality of populations in the evolution process,making the solution set as close as possible to the true Pareto-optimal front.The verification results from a multi-objective optimal operation case study of cascade reservoirs in the Jinxi River Basin of Fujian Province show that the improved NSGA-Ⅱalgorithm has higher computational efficiency and better optimization results compared to other algorithms,demonstrating good practicality.

cascade reservoirsoptimal operationmulti-objective optimizationimproved NSGA-Ⅱ algorithm

黄显峰、王宁、刘志佳、方国华、钱骏

展开 >

河海大学水利水电学院,江苏南京 210098

华电福新能源股份有限公司池潭水力发电厂,福建三明 353000

梯级水库 优化调度 多目标优化 改进NSGA-Ⅱ算法

国家自然科学基金项目

52179012

2024

水利水电科技进展
河海大学

水利水电科技进展

CSTPCD北大核心
影响因子:0.866
ISSN:1006-7647
年,卷(期):2024.44(4)