首页|无人机河湖巡检中BPT结点区域合并算法应用研究

无人机河湖巡检中BPT结点区域合并算法应用研究

扫码查看
针对无人机河湖巡检图像存在较高的域内异质性、域间同质性,使用单阶段的分割算法易形成不完整目标区域提取结果等问题,设计一种基于二叉划分树结点的区域合并算法.算法包含初始分割、区域合并 2 个阶段,采用分水岭算法进行初始分割形成误分割率较低的过分割区域集,对过分割区域集合中的区域对进行相似性度量,根据过相似性度量结果构建 BPT 树,遍历 BPT 树确定过分割区域集合的合并次序.在河湖巡检数据集上,与自适应区域合并进行对比,结果表明:基于二叉划分树结点的区域合并算法的分割精度、时间效率均优于自适应区域合并算法,可以实现目标在图像中的精确提取.
Research on application of BPT node region merging algorithm in UAV rivers and lakes patrol inspection
In view of the problems of the high intra-domain heterogeneity and inter-domain homogeneity in UAV images of rivers and lakes patrol inspection,incomplete target region extraction results are easy to be obtained by using single-stage segmentation algorithm,and a region merging algorithm based on BPT nodes is designed.The algorithm consists of two stages:initial segmentation and region merging,which uses the watershed algorithm for initial segmentation to form the over segmentation region set with low mis-segmentation rate.The similarity measurement of the region pairs in the over segmentation region set is carried out,and the BPT tree is constructed according to the similarity measurement results of the over segmentation region set.Thus,by traversing the BPT tree,the merging order of the optimal over segmentation region set is determined.The comparison between the algorithm presented and adaptive region merging is carried out in rivers and lakes inspection data set.The result shows that the region merging algorithm based on BPT nodes has better segmentation accuracy and time efficiency than the adaptive region merging algorithm,which can achieve accurate extraction of the object in UAV images of rivers and lakes patrol inspection.

BPT node region mergingregion merging algorithmrivers and lakes patrol inspectionUAVintelligent image processing

刘建龙、钱晓军、闵克祥、顾昊、刘建华

展开 >

江苏省秦淮河水利工程管理处,江苏 南京 210022

南京师范大学,江苏 南京 210023

BPT结点区域合并 区域合并算法 河湖巡检 无人机 图像智能处理

江苏省水利科技项目

2021064

2024

水利信息化
水利部南京水利水文自动化研究所

水利信息化

影响因子:0.571
ISSN:1674-9405
年,卷(期):2024.(1)
  • 5