首页|基于多源数据的黄河冰凌监测技术研究

基于多源数据的黄河冰凌监测技术研究

扫码查看
为提升黄河冰凌监测的准确性与效率,克服传统人工观测在精度和效率上的局限,通过整合卫星遥感、无人机遥感及视频监控技术,开展基于多源数据的黄河冰凌监测技术研究.该技术能够利用多光谱遥感影像结合雪被指数法,实现对河道冰凌的全面监测,同时,借助无人机自动识别技术精确获取冰凌的关键参数,并通过视频监控技术实时发现并预警冰凌密度变化.在这项研究中,无人机遥感参数的误差被控制在 5%以内,视频监控技术的误差最大为 7.2%,最小仅为 0.1%.基于多源数据的冰凌监测技术在山东黄河河务局的应用表明:该技术不仅显著提高工作效率,还变革传统的冰凌监测模式,极大地支撑河道管理及相关业务工作,对高纬度地区河流冰凌灾害的智能监测预警具有重要价值,也为可视化冰情分析提供可靠的图像成果,未来有着广泛的应用潜力.
Research on Yellow River ice floe monitoring technology based on multi-source data
To enhance the accuracy and efficiency of Yellow River ice floe monitoring and overcome the limitations of precision and efficiency in traditional manual observations,this study integrates satellite remote sensing,unmanned aerial vehicle(UAV)remote sensing,and video surveillance technologies to carry out research on ice floe monitoring technology based on multi-source data.This technology can utilize multispectral remote sensing images combined with the snow cover index method to achieve comprehensive monitoring of river ice floe.Meanwhile,it precisely obtains key parameters of ice floe with UAV automatic recognition technology and detects and warns about changes in ice floe density in real time through video surveillance technology.In this research,the error margin for UAV remote sensing parameters is controlled within 5%,and the error for video surveillance technology ranges from a maximum of 7.2%down to a minimum of only 0.1%.Applications by Shandong Yellow River Conservancy Bureau indicate that this technology not only significantly improves work efficiency but also revolutionizes the traditional ice floe monitoring mode,greatly supporting river management and related operations.It holds significant value for intelligent monitoring and early warning of river ice disasters in high-latitude regions and also provides reliable image results for visual ice condition analysis,demonstrating broad application potential in the future.

Yellow River ice floe monitoringmulti-source datasatellite remote sensingUAV remote sensingvideo surveillanceice floe densityflow rate estimationvisual ice condition analysis

冯士贺、于苹苹、段同苑、刘俊杰

展开 >

山东黄河河务局山东黄河信息中心,山东 济南 250013

黄河冰凌监测 多源数据 卫星遥感 无人机遥感 视频监控 冰凌密度 流速估计 可视化冰情分析

2024

水利信息化
水利部南京水利水文自动化研究所

水利信息化

影响因子:0.571
ISSN:1674-9405
年,卷(期):2024.(4)