首页|基于因子隐马尔可夫模型的VaR与ES联合预测

基于因子隐马尔可夫模型的VaR与ES联合预测

扫码查看
VaR和ES是衡量金融资产风险的重要测度,对风险控制和金融危机的识别具有重要意义.本文以CAViaR模型为基础,通过因子隐马尔可夫模型构造潜变量,作为CAViaR模型的回归系数的组成部分,最终提出了一个含潜变量的VaR和ES联合估计方法(FHM-CAViaR),实现了VaR和ES的联合预测.在该模型中,潜变量由一个因子隐马尔可夫模型驱动,可以刻画市场信息对模型系数带来的长期效应与短期冲击,该因子隐马尔可夫模型的引入实现了分位数回归模型参数在上百个状态间的转换.最后,基于本文提出的FHM-CAViaR模型分别对上证综指、深证综指和纳斯达克指数的对数收益率数据进行实证分析.实证结果表明,本文提出的模型具有更优的预测效果.此外实证结果还表明,在危机期间VaR的序列聚集性有着显著的增加.本文提出的模型可以通过潜变量的变化识别市场的机制变换,且能更精确地对金融资产的VaR以及ES进行估计,给出金融风险度量一种新的研究方法.
Forecasting VaR and ES Using A Factorial Hidden Markov Approach
VaR and ES are two important measures that estimate the risk of financial assets.They are of great significance as they can help financial risk management and financial crisis identification.In this paper,a latent variable,constructed by the Factorial Hidden Markov Model,is added into the CAViaR model,and a new model to jointly predict VaR and ES-FHM-CAViaR Model is finally created.In this model,the latent variable is driven by a Factorial Hidden Markov Model to reflect the long-term and short-term impact of market and the Markov chain can transform among hundreds of states.Then,we use this proposed new model to analyze logarithmic return data of different stock markets.Results show that FHM-CAViaR Model has achieved superior prediction effects and the aggregation of VaR increases significantly during the crisis.In general,the model proposed in this paper can recognize the regime switching of the market through the latent variable and estimate the VaR and ES of financial assets more accurately,which provides a new approach to measuring financial risk.

factor hidden Markov modeljoint predictionasymmetric Laplace distributionregime switch

叶五一、李妲、焦守坤

展开 >

中国科学技术大学大数据学院,安徽合肥 230026

中国科学技术大学管理学院,安徽合肥 230026

因子隐马尔可夫模型 联合预测 非对称拉普拉斯分布 机制转换

国家自然科学基金面上项目国家自然科学基金面上项目安徽省杰出青年基金

72371230719731332208085J41

2024

数理统计与管理
中国现场统计研究会

数理统计与管理

CSTPCDCSSCICHSSCD北大核心
影响因子:1.114
ISSN:1002-1566
年,卷(期):2024.43(1)
  • 22