首页|基于MRCD估计的高维稳健因子分析方法及应用研究

基于MRCD估计的高维稳健因子分析方法及应用研究

扫码查看
因子分析是常用的多元统计分析方法之一,其思想是根据变量间的相关关系求出少数几个主因子,利用这些主因子描述原始变量.传统因子分析方法具有不稳健性,如果数据存在离群值会得到不合理的结果.虽然基于MCD估计的稳健因子分析具有良好的抗干扰性,但是MCD估计的精度会随着维数的增加而不断降低,在维数大于样本量的情形下,该方法甚至会失去有效性.为了对高维数据进行有效的因子分析,本文提出基于MRCD估计的高维稳健因子分析方法.模拟分析的结果表明,在高维数据下,相较于传统因子分析以及MCD稳健因子分析,MRCD高维稳健因子分析能够很好地抵抗离群值的影响,得出更为合理的结论.本文在实证分析部分对11个沿海省份进行研究,结果显示MRCD高维稳健因子模型能够有效地得出高维数据的因子分析结果;沿海各省份经济增长质量发展不平衡,上海、广东经济增长质量发展得较好.
High-Dimensional Robust Factor Analysis Method Based on MRCD Estimation and Its Application
Factor analysis is one of the common multivariate statistical analysis methods.Its idea is to find a few principal factors according to the correlation between variables,and use these principal factors to describe the original variables.The traditional factor analysis method is not robust and will get unreasonable results if there are outliers in the data.Although the robust factor analysis based on MCD estimation has good anti-interference,the accuracy of MCD estimation will decrease with the increase of dimension,and this method will even lose effectiveness when the dimension is larger than the sample size.In order to carry out effective factor analysis for high-dimensional data,this paper proposes a high-dimensional robust factor analysis method based on MRCD estimation.The simulation results show that,compared with the traditional factor analysis and the MCD robust factor analysis,the MRCD high-dimensional robust factor analysis can resist the influence of outliers well and reach more reasonable conclusions under the high-dimensional data.In the empirical analysis part,this paper studies 11 coastal provinces,the results show that MRCD high-dimensional robust factor model can effectively obtain the factor analysis results of high-dimensional data;The quality of economic growth in coastal provinces is not balanced,Shanghai and Guangdong are better.

high-dimensional dataMRCD estimationfactor analysis

姜云卢、丰之韵、刘巧云、邹航

展开 >

暨南大学经济学院,广东广州 510632

高维数据 MRCD估计 因子分析

国家自然科学基金广东省自然科学基金中央高校基本科研业务费专项

121712032022A151501004523JNQMX21

2024

数理统计与管理
中国现场统计研究会

数理统计与管理

CSTPCDCSSCICHSSCD北大核心
影响因子:1.114
ISSN:1002-1566
年,卷(期):2024.43(2)
  • 23