首页|基于局部稳健权重的多元非参数模型贝叶斯带宽调节因子和阶数选择

基于局部稳健权重的多元非参数模型贝叶斯带宽调节因子和阶数选择

扫码查看
局部多项式回归估计是常用的非参数回归估计方法之一,而要完成局部多项式估计,多项式的阶数及带宽的选择是必不可少的.但现阶段研究者大多关注的是带宽选择方面的研究,而对于同时选择多项式的阶数及核函数带宽方面的研究则相对较少.针对这一问题,在现有研究基础上,本文提出基于局部稳健权重多项式估计的贝叶斯带宽调节因子和阶数选择方法,此方法采用随机游动Metropolis算法估计复杂带宽调节因子的后验概率密度,再结合交叉验证法则,达到选择带宽调节因子的同时估计出多项式最优阶数的目的.本文通过二维及三维模型进行数值模拟及运用实际期权数据进行实证分析,并与传统的交叉验证进行对比,证实本文所提方法的优越性.
Bayesian Bandwidth Adjusted Factor and Order Selection for Multivariate Nonparametric Models Based on Local Robust Weights
Local polynomial regression estimation is one of the commonly used non-parametric regression estimation methods.To estimate the local polynomial regression,it is necessary to select the order of the polynomial and the bandwidth of the kernel function.Nevertheless,at present,most scholars focus on the method of bandwidth selection,while the researches select both of the order of polynomial and the bandwidth at the same time are less.In order to solve this problem,based on the existing research,a local robust weighted polynomial estimation based on the Bayesian bandwidth adjust factor is proposed.A random walk metropolis algorithm is used to estimate the complex posterior probability density of the bandwidth adjusted factor.Combined with the cross-validation method,the order of the polynomial and the bandwidth adjust factor are selected and estimated at the same time.Numerical simulations are performed through two and three dimension of non-parametric models,and empirical analysis of option data is provided.Compared with traditional cross-validation rules,the feasibility of the proposed method is confirmed.

bandwidth adjusted factorBayesian estimationrobust locally weighted regressioncross-validation

颜海波、郑林娟、黄楚滢

展开 >

暨南大学公共管理学院,广东广州 510632

暨南大学经济学院,广东广州 510632

中山大学数学学院,广东广州 510275

带宽调节因子 贝叶斯估计 局部稳健权重回归 交叉验证

2024

数理统计与管理
中国现场统计研究会

数理统计与管理

CSTPCDCSSCICHSSCD北大核心
影响因子:1.114
ISSN:1002-1566
年,卷(期):2024.43(3)
  • 6