首页|基于LAD-LASSO的多门限波动率模型估计与应用

基于LAD-LASSO的多门限波动率模型估计与应用

扫码查看
本文研究一类具有多门限结构的条件异方差自回归模型(T-CHARM)的估计和应用.针对门限个数未知以及金融数据的厚尾性质,我们采用最小绝对偏差套索算法(LAD-LASSO)同时估计门限个数和模型的未知参数.该方法在模型误差项四阶矩不存在时仍然有效,放宽了经典LASSO方法在门限模型上的适用场合.蒙特卡洛模拟表明,在门限个数的正确识别率、门限值和波动率参数值的估计方面,LAD-LASSO方法均具有优良的有限样本表现.本文将提出的LAD-LASSO方法结合T-CHAR模型,应用于沪深300指数日度收益率数据的建模和预测.实证结果表明,与采用LAD方法估计的经典GARCH模型相比,本文提出的方法在样本内拟合和样本外预测方面均有优越表现.
Estimation and Application of Multi-Threshold Volatility Models Based on LAD-LASSO
We study the estimation and application of a class of Threshold-Conditional Heteroscedas-ticity Autoregressive Models(T-CHARM)with Multiple Thresholds.Considering the unknown number of thresholds and the heavy-tailed property of financial data,we use the Least Absolute Deviation Lasso(LAD-LASSO)algorithm to estimate the unknown parameters and the number of thresholds simultane-ously.This method remains effective even when the fourth moment of the model error term does not exist,which relaxes the applicability of the classical LASSO method in threshold models.Monte Carlo simulations show that the LAD-LASSO method has excellent finite sample performance in terms of the correct identification rate of threshold numbers,estimation of threshold values,and volatility parameter values.The proposed LAD-LASSO method with the T-CHARM is applied to model and forecast the daily returns of the CSI 300 Index.Empirical results show that compared to the classical GARCH model estimated by the LAD approach,the proposed method has superior performance in both in-sample fitting and out-of-sample forecasting.

multiple thresholdsvolatilityLASSOLADrealized volatility

李木易、童晨、张晓林

展开 >

厦门大学王亚南经济研究院,福建厦门 361005

厦门大学经济学院,福建厦门 361005

厦门大学大数据金融交叉实验室,福建厦门 361005

多门限 波动率 LASSO LAD 已实现波动率

国家自然科学基金重点项目国家自然科学基金面上项目国家社会科学基金重大项目教育部人文社会科学研究青年基金

720330087207311220&ZD10622YJC790117

2024

数理统计与管理
中国现场统计研究会

数理统计与管理

CSTPCDCSSCICHSSCD北大核心
影响因子:1.114
ISSN:1002-1566
年,卷(期):2024.43(3)
  • 4