首页|基于UPEMD融合RCMCSE和ALWOA-BP的水电机组故障诊断

基于UPEMD融合RCMCSE和ALWOA-BP的水电机组故障诊断

扫码查看
水电机组振动信号的诊断对机组安全稳定运行至关重要.本文提出一种基于均匀相位经验模态分解(Uniform Phase EMD,UPEMD)融合精细复合多尺度余弦相似熵(Refined Composite Multiscale CSE,RCMCSE)和改进鲸鱼算法优化反向传播神经网络(ALWOA-BP)的水电机组故障诊断方法.利用UPEMD对原始信号进行分解,然后建立WOA-BP故障诊断模型.针对WOA算法快速陷入局部最优和过早收敛的问题,采用自适应权重和莱维飞行对WOA算法进行优化.实验结果表明,该方法的准确率达到了 100%.为探究所提模型的抗噪性能,引入信噪比为2dB的噪声进行再次分析,诊断结果为94.44%,明显优于其他未优化模型.该项研究可以对现有水电机组故障诊断方法进行有价值的补充.
Fault diagnosis of hydropower units based on UPEMD integrating RCMCSE and ALWOA-BP
The diagnosis of vibration signals in hydropower units is crucial to the safe and stable operation of the u-nits.This article proposes a fault diagnosis method for hydropower units based on uniform phase empirical mode de-composition(UPEMD)combined with refined composite multiscale cosine similarity entropy(RCMCSE)and an im-proved whale optimization algorithm(ALWOA)optimized back propagation neural network(BP).The UPEMD is used to decompose the original signal,and then a WOA-BP fault diagnosis model is established.To solve the problem of WO A algorithm quickly falling into local optimum and premature convergence,an adaptive weight and Levy flight are used to optimize the WO A algorithm.Experimental results show that the accuracy of this method reached 100%.To explore the noise resistance performance of the proposed model,a noise with a signal-to-noise ratio of 2 dB was introduced for re-analysis,and the diagnostic result was 94.44%,which was significantly better than other unoptimized models.This study can provide a valuable complement to existing fault diagnosis methods for hydropower units.

hydropower unitsrefined composite multiscale entropycosine similarity entropyALWOA-BPfault diagnosis

李想、钱晶、曾云

展开 >

昆明理工大学冶金与能源学院,云南昆明 650093

云南省高校水力机械智能测试工程研究中心,云南昆明 650093

水电机组 精细复合多尺度熵 余弦相似熵 ALWOA-BP 故障诊断

国家自然科学基金项目国家自然科学基金项目

5207905952269020

2024

水利学报
中国水利学会

水利学报

CSTPCD北大核心
影响因子:1.778
ISSN:0559-9350
年,卷(期):2024.55(6)