首页|稻米加工副产品营养指标的近红外预测模型的建立

稻米加工副产品营养指标的近红外预测模型的建立

扫码查看
为实现对稻米加工副产品营养物质的快速检测,按需进行饲料加工和加工副产品分级,研究选用302份稻米加工副产品样品(碎米107份、腹白米77份及异色粒118份),经过标准方法理化数据检测、样品前处理、近红外光谱采集、光谱数据预处理、筛选特征波长和建立模型等步骤,最终建立了针对碎米、腹白米及异色粒3种稻米加工副产品总体的水分、粗蛋白、粗脂肪以及粗纤维营养指标的总定量预测模型.结果显示:所建立的模型决定系数R2均大于0.85,相对分析误差(RPD)均大于2.5,具有较好的准确性、稳定性.研究表明,此检测方法快速、高效、准确,提高了稻米加工副产品的综合利用率.
Establishment of near infrared prediction model for nutritional indexes of rice processing by-products
In order to achieve rapid detection of nutritional substances in by-products of rice processing and promote on-demand feed processing and grading of processing by-products,a study was conducted using a total of 302 samples of rice processing by-products(107 broken rice samples,77 belly white rice samples,and 118 discolored grain samples).Through standard methods of physicochemical data detection,sample pretreatment,near-infrared spectroscopy acquisition,spectral data preprocessing,feature wavelength selection,and model establishment,quantitative prediction models for moisture,crude protein,crude fat,and crude fiber nutritional parameters for the overall categories of broken rice,belly white rice,and discolored grain in rice processing by-products were ultimately established.The results showed that the coefficient of determination(R2)for the established models was greater than 0.85,and the relative prediction error(RPD)was greater than 2.5,indicating good accuracy and stability.The study indicates that the method is rapid,efficient and accurate,and greatly improves the comprehensive utilization rate of by-products of rice processing.

broken ricebelly white ricediscolored grainmoisturecrude proteincrude fatcrude fiber

翟晨、高曼、栾鑫鑫、钱承敬、张巍巍、史晓梅、罗云敬、吕朝政

展开 >

中粮营养健康研究院营养健康与食品安全北京市重点实验室,北京 102209

北京工业大学环境与生命学院,北京 100124

碎米 腹白米 异色粒 水分 粗蛋白 粗脂肪 粗纤维

中粮集团项目

2023-B2-T016

2024

饲料研究
北京市营养源研究所

饲料研究

CSTPCD北大核心
影响因子:0.391
ISSN:1002-2813
年,卷(期):2024.47(4)
  • 30