首页|对症下"谣"——谣言评级模型推动差异化管理

对症下"谣"——谣言评级模型推动差异化管理

扫码查看
本研究提出了一种谣言分级的策略.通过深入的调研和数据分析,收集并处理了大量的谣言数据,提取出关键特征,并进行高质量的标注.基于这些数据建立了初步的谣言评级模型,并利用主动学习算法提高了模型的泛化能力.随着数据库的不断扩大,模型的性能将进一步提升.谣言分级具有广泛的应用价值,建议建立谣言等级治理体系,以实现差异化的管理.
Rumor Rating Model to Promote Differentiated Management
This study proposes a strategy of rumor grading.Through in-depth research and data analysis,a large amount of rumor data was collected and processed,key features were extracted,and high-quality labeling was performed.Based on these data,a preliminary rumor rating model is established,and the generalization ability of the model is improved using active learning algorithms.With the continuous expansion of the database,the performance of the model will be further improved.Rumor rating has a wide range of application value,and it is recommended to establish a rumor rating governance system to achieve differentiated management.

rumor rating modelrumor gradingactive learning algorithmmachine learning

刘博金、张心怡、纪伯庸、王靖萱、常亚乾

展开 >

河北地质大学 管理学院,石家庄 050031

谣言评级模型 谣言分级 主动学习算法 机器学习

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(1)