首页|气象数据质控方法的现状分析及思考

气象数据质控方法的现状分析及思考

扫码查看
近年来,全球气候变暖导致极端天气频发,对各个领域产生了巨大影响.气象数据的准确性和一致性成为关注焦点,不准确的数据可能影响公众决策和生产活动.传统的质控策略包括气候学界限值检查、时间连续性检验、内部一致性检验和空间连续性检验等.随着大数据时代的到来,基于数据挖掘的先进质控策略得到了广泛研究,如机器学习、聚类算法、回归模型和卷积神经网络等方法.目前,欧洲中期天气预报中心和美国气象公司等已成功应用深度神经网络和卷积神经网络等技术.然而,面向用户的质控方案仍存在不足,需要进一步改善用户体验和服务策略.因此,深入研究用户反馈并提高气象服务质量是提升品牌气象服务的关键.这一研究框架为气象数据质控领域的深化提供了有益的指导.
Analysis of the Current Status of Meteorological Data Quality Control Methods and Reflections
In recent years,global warming has led to frequent occurrence of extreme weather,which has a great impact on various fields.The accuracy and consistency of meteorological data have become the focus of attention,and inaccurate data may affect public decision-making and production activities.Traditional quality control strategies include climatological boundary value check,temporal continuity test,internal consistency test and spatial continuity test.With the advent of the big data era,advanced QC strategies based on data mining have been widely studied,such as machine learning,clustering algorithms,regression models and convolutional neural networks.Currently,techniques such as deep neural networks and convolutional neural networks have been successfully applied by the European Center for Medium-Range Weather Forecasting and the U.S.Weather Company,among others.However,user-oriented QC programs are still deficient and need to further improve user experience and service strategies.Therefore,in-depth research on user feedback and improving the quality of weather services are key to enhancing branded weather services.This research framework provides useful guidance for deepening the field of weather data QC.

weather dataquality controlmachine learningmeteorological dataweather stations

刘晨、梁乐宁、赵倩、鲁礼文、辛宏伟

展开 >

北京天译科技有限公司,北京 100081

气象数据 质量控制 机器学习 气象数据 气象站

华风集团青年发展基金创新研究项目

QNFZ-2022007

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(8)
  • 4