首页|基于Merkle哈希树的电力营销数据异常识别方法

基于Merkle哈希树的电力营销数据异常识别方法

扫码查看
在识别电力营销异常数据时,由于原始电力数据自身具有一定的波动性和不规则发展的属性特征,导致识别结果的精度较低,为此,提出基于Merkle哈希树的电力营销数据异常识别方法研究.首先利用Merkle哈希树对电力营销数据进行预处理,以电力营销数据项内的数据摘要为基准,组建了涵盖所有电力营销数据集的树形结构,为了减少计算过程中的重复操作,将编码嵌入到哈希树的根部节点,实现对电力营销数据Merkle哈希树包含所有数据项的验证.在异常数据识别阶段,利用随机解耦性特征分解方法分解电力营销数据Merkle哈希树的特征值,并将其作为异常值判定的标准.在测试结果中,设计方法对于不同异常数据类的识别结果不仅表现出了较高的稳定性,且整体识别误差也始终处于较低水平.
Merkle Merkle tree Based Anomaly Identification Method for Electric Power Marketing Data
When identifying the abnormal data of power marketing,the accuracy of the identification results is low because the original power data itself has certain volatility and irregular development attribute characteristics.Therefore,a Merkle Merkle tree based method for identifying the abnormal data of power marketing is proposed.Firstly,the Merkle Merkle tree is used to preprocess the power marketing data.Based on the data summary in the power marketing data items,a tree structure covering all the power marketing data sets is constructed.In order to reduce repeated operations in the calculation process,the code is embedded in the root node of the Merkle tree to verify that the power marketing data Merkle Merkle tree contains all the data items.In the phase of abnormal data identification,the random decoupling Eigendecomposition of a matrix method is used to decompose the eigenvalues of the Merkle Merkle tree of the power marketing data,and it is used as the criteria for determining Outlier.In the test results,the design method not only showed high stability in identifying different abnormal data classes,but also consistently maintained a low level of overall recognition error.

merkle treeelectricity marketing dataabnormal identificationdata summarytree structurerandom decoupling

刘沙、郭瑞、穆羡瑛、徐述

展开 >

国网乌鲁木齐供电公司,乌鲁木齐 830000

国网南京供电公司,南京 210000

Merkle哈希树 电力营销数据 异常识别 数据摘要 树形结构 随机解耦

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(8)