首页|大数据环境下数据清洗与预处理技术研究

大数据环境下数据清洗与预处理技术研究

扫码查看
本文首先介绍了数据清洗与预处理的基本概念、目标及其在数据分析中的重要性.接着分析了大数据环境下数据清洗面临的主要挑战,包括处理大规模数据集所带来的数据量挑战、多源数据的质量问题,以及现有技术与工具的局限性.此外,本文还探讨了几种改进的数据清洗与预处理方法,特别是基于机器学习的数据清洗技术和高效的数据预处理策略,以应对大数据的特定需求.最后,文章总结了数据清洗与预处理技术在大数据分析中的重要作用,并对未来的发展方向进行了展望.
Research on Data Cleaning and Preprocessing Technology in Big Data Environment
This paper firstly introduces the basic concepts and objectives of data cleaning and preprocessing and their importance in data analysis.Then,it analyzes the main challenges of data cleansing in the big data environment,including the data volume challenge brought by handling large-scale data sets,the quality problem of multi-source data,and the limitations of existing techniques and tools.In addition,this paper explores several improved data cleansing and preprocessing approaches,especially machine learning-based data cleansing techniques and efficient data preprocessing strategies to cope with the specific needs of big data.Finally,the article summarizes the important role of data cleansing and preprocessing techniques in big data analytics and provides an outlook on the future direction of development.

big datadata cleaningdata preprocessingmachine learningdata analysis

王湛迪

展开 >

河北科技大学,石家庄 050000

大数据 数据清洗 数据预处理 机器学习 数据分析

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(9)