首页|基于改进协同过滤算法的电力营销数据异常识别方法

基于改进协同过滤算法的电力营销数据异常识别方法

扫码查看
针对现有识别方法无法实现对电力营销数据异常的识别,识别准确度较低的问题,本文引入改进协同过滤算法,开展对电力营销数据异常识别方法的设计研究.通过改进协同过滤算法运算,实现电力营销数据相异性度量;根据度量结果,提取电力营销数据异常特征;结合关联规则,完成对数据异常识别与输出.通过对比实验证明,新的识别方法具备极高的应用可行性,且在应用中可以实现对电力营销数据异常情况的高准确度识别,具备极高应用价值.
Anomaly Recognition Method for Power Marketing Data Based on Improved Collaborative Filtering Algorithm
Aiming at the problem that the existing identification methods cannot realize the identification of power marketing data anomalies and the accuracy of identification is low,this paper introduces the improved collaborative filtering algorithm to carry out the research on the design of the identification method of power marketing data anomalies.Through the operation of improved collaborative filtering algorithm,the power marketing data dissimilarity metric is realized;according to the metric results,the abnormal features of power marketing data are extracted;combined with the association rules,the data anomaly identification and output are completed.Through comparison experiments,it is proved that the new identification method has high application feasibility and can realize high accuracy identification of power marketing data anomalies in the application,which has high application value.

improved collaborative filtering algorithmpower marketinganomaly data identificationpower data

张漪

展开 >

江苏省电力公司苏州供电公司,江苏苏州 215004

改进协同过滤算法 电力营销 异常数据识别 电力数据

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(9)