首页|基于Transformer Encoder和LSTM的计及多变量的风电功率短期预测

基于Transformer Encoder和LSTM的计及多变量的风电功率短期预测

扫码查看
短期风力发电的准确可靠预测对电网的稳定运行具有重要意义.针对风力发电的不稳定性,本文提出了一种结合Transformer的 Encoder和LSTM的混合构架,考虑多种影响因素对风力发电这种复杂的时间序列数据进行建模和预测.实验结果表面,本文所提出的Transformer Encoder-LSTM模型在风力发电预测任务上取得了明显的性能提升,在平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)等评估指标上都优于单一的LSTM和GRU模型.
Transformer Encoder-LSTM Based Short-Term Wind Power Forecasting Considering Multiple Variables
Accurate and reliable short-term wind power prediction is crucial for the stable operation of the power grid.To address the instability of wind power generation,this paper proposes a hybrid architecture combining Transformer Encoder and LSTM,considering various influencing factors to model and predict this complex time series data.Experimental results indicate that the proposed Transformer Encoder-LSTM model achieves significant performance improvements in the wind power prediction task,outperforming single LSTM and GRU models in terms of Mean Absolute Error(MAE),Root Mean Square Error(RMSE),and Mean Absolute Percentage Error(MAPE).

transformerLSTMwind power predictionpower system

黄佳骏

展开 >

国网上海市电力公司市南供电公司,上海 200000

Transformer LSTM 风力发电预测 电力系统

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(10)