首页|苹果叶片病害识别的注意力卷积神经网络研究

苹果叶片病害识别的注意力卷积神经网络研究

扫码查看
应用人工智能检测苹果叶部病害,对防治工作的开展具有重要意义。目前,利用YOLOv5进行苹果叶片病害识别的方法存在漏检率和漏检率较高的问题。为了解决以上问题,利用CAM(Context Augmentation Module)特征信息融合技术,对YOLOv5原有算法进行优化,解决传统算法在多尺度特征融合中存在的问题。此外,提出了一种基于Transformer的融合算法,该算法将注意力集中在有价值的信息上。实验证明,通过ATCSP等模块的整合,mAP@0。5从0。396提高到0。463,提高幅度为16。9%,召回率从0。383提升到0。439,提升幅度为14。6%。实验结果表明,该算法可以快速准确地提高苹果叶片病害的识别率,同时也提高了对病害的准确定位。
Research on Attentional Convolutional Neural Network for Apple Leaf Disease Recognition
The application of artificial intelligence to detect apple leaf diseases is of great significance to the control work.At present,the method of apple leaf disease identification using YOLOv5 has the problem of high leakage and detection rate.In order to solve the above problems,the original algorithm of YOLOv5 is optimized by using CAM(Context Augmentation Module)feature information fusion technology to solve the problems of traditional algorithms in multi-scale feature fusion.In addition,a Transformer-based fusion algorithm is proposed,which focuses attention on valuable information.The experiment proves that the integration of modules such as ATCSP,mAP@0.5从0.396提高到0.463 improves by 16.9%,and the recall rate is improved from 0.383 to 0.439,which is 14.6%.The experimental results show that the algorithm can quickly and accurately improve the recognition rate of apple leaf diseases,as well as improve the accurate localization of the disease.

apple leaf disease recognitionimproved YOLOv5CAMATCSP

曲逸飞、傅卓军

展开 >

湖南农业大学信息与智能科学技术学院,长沙 410128

苹果叶片病害识别 改进YOLOv5 CAM ATCSP

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(11)