首页|基于电能计量大数据的电力用户用电行为异常识别方法

基于电能计量大数据的电力用户用电行为异常识别方法

扫码查看
为了提高电力用户用电行为异常识别的精确率,规避窃电风险,保证智能电网供电的安全性与可靠性,开展了基于电能计量大数据的电力用户用电行为异常识别方法研究.首先,利用电能计量大数据,对电力负荷数据进行全方位地采集与预处理,作为用电行为异常识别样本数据.其次,从样本数据中筛选出具有用电异常嫌疑的用户.在此基础上构建用电行为异常识别模型,对筛选出的嫌疑用户的用电行为进行识别,输出用电行为正常样本与异常样本.实验分析结果表明,提出的识别方法应用后,电力用户用电行为异常识别精确率均达到了98%以上,能够更加准确地识别出异常用电行为,减少窃电隐患.
A Method for Identifying Abnormal Electricity Consumption Behavior of Power Users Based on Big Data of Electricity Metering
In order to improve the accuracy of identifying abnormal electricity consumption behavior of power users,avoid the risk of electricity theft,and ensure the safety and reliability of smart grid power supply,a research on identifying abnormal electricity consumption behavior of power users based on big data of electricity metering has been carried out.Firstly,utilizing the big data of electricity metering to comprehensively collect and preprocess electricity load data,as sample data for identifying abnormal electricity consumption behavior.Secondly,from the sample data,select users who are suspected of having abnormal electricity usage.On this basis,a model for identifying abnormal electricity consumption behavior is constructed to identify the electricity consumption behavior of the selected suspected users,and output normal and abnormal electricity consumption behavior samples.The experimental analysis results show that after the application of the proposed recognition method,the accuracy of identifying abnormal electrical behavior of power users has reached over 98%,which can more accurately identify abnormal electrical behavior and reduce the hidden danger of electricity theft.

electricity meteringbig dataelectricity anomaly recognitionelectricity safetyelectricity theft prevention

李琳

展开 >

国网西咸新区泾河新城供电公司,陕西咸阳 713700

电能计量 大数据 电力异常识别 用电安全 防窃电

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(11)