首页|基于卷积神经网络的MURA数据集图像识别研究

基于卷积神经网络的MURA数据集图像识别研究

扫码查看
随着深度学习技术的发展,图像的自动化识别已成为很多领域的重要需求之一。本文首先研究了卷积神经网络(Convolutional Neural Network,CNN)模型和VGG16网络模型的结构与基本原理,深入分析了MURA数据集的图像特点,并对其进行了预处理。然后,为提高图像识别精度,构建了MURA数据集上的图像异常识别过程模型,并提出了VGG16模型的参数微调方法。通过实验结果分析可以看出,调整后的VGG16模型在MURA数据集上的识别精度达到0。87,Kappa系数达到0。58,验证了改进VGG16模型的有效性与实用性。
Research on Image Recognition of MURA Dataset Based on Convolutional Neural Networks
With the development of deep learning technology,automated image recognition has become one of the important requirements in many fields.Firstly,the structure and basic principles of convolutional neural network models and VGG16 network models were studied,and the image characteristics of the MURA dataset were thoroughly analyzed and preprocessed.Then,in order to improve the accuracy of image recognition,a model for image anomaly recognition process on the MURA dataset was constructed,and a parameter fine-tuning method for the VGG16 model was proposed.Through the analysis of experimental results,it can be seen that the adjusted VGG16 model has a recognition accuracy of 0.87 and a Kappa coefficient of 0.58 on the MURA dataset,which verifies the effectiveness and practicality of the improved VGG16 model.

convolutional neural networkVGG16 modelimage recognitionMURA datasetdeep learning techniques

宋培瑄、王宝凤、张丹宁、程楀涵

展开 >

天津职业技术师范大学 信息技术工程学院 天津 300222

卷积神经网络 VGG16模型 图像识别 MURA数据集 深度学习技术

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(12)