首页|动态场景下基于视觉传感器的SLAM研究

动态场景下基于视觉传感器的SLAM研究

扫码查看
在动态场景下,同步定位与地图构建(SLAM)容易受多方面因素的影响,进而降低精确度,鲁棒性较差.基于此,本文首先应用GCNv2进行特征提取,而后基于语义分割网络Deeplabv3+,提出像素级的图像语义分割方法,对先验动态目标对象进行分割.设计一种方法,对多视图几何的动态点进行检测,以此对研究对象的运动状态进行动态检测,结合静态特征进行位姿估计.最后,结合关键帧和深度图,生成包含语义信息的点云地图和八叉树地图,结果表明该算法有效提高了VSLAM系统在动态场景下的性能.
Research on Visual Sensor-based SLAM in Dynamic Scenes
In dynamic scenes,simultaneous localization and map construction(SLAM)are easily affected by various factors,which reduces the accuracy and poor robustness.Based on this,this paper first applies feature extraction,and then based on the semantic segmentation network,proposes a pixel-level image semantic segmentation method to segment a priori dynamic target objects.A method is designed to detect the dynamic points of multi-view geometry as a way to dynamically detect the motion state of the research object and combine static features for position estimation.Finally,combining keyframes and depth maps to generate point cloud maps and octree maps containing semantic information,the results show that the algorithm effectively improves the performance of the system in dynamic scenes.

visual sensorlocalization and map buildingdynamic scene

余宏杰

展开 >

中国科学技术大学,合肥 215004

视觉传感器 定位与建图 动态场景

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(12)