首页|基于电能计量数据K-MEANS聚类的电力用户窃电行为识别

基于电能计量数据K-MEANS聚类的电力用户窃电行为识别

扫码查看
由于现行方法在电力用户窃电行为识别中应用效果不佳,AUC值比较低,无法达到预期的识别效果.针对现行方法存在的不足和缺陷,本文提出基于电能计量数据K-MEANS聚类的电力用户窃电行为识别.利用ETL技术对电能计量数据中负荷数据抽取,采用K-MEANS聚类算法对数据聚类分析,诊断识别用户窃电行为,以此实现基于电能计量数据K-MEANS聚类的电力用户窃电行为识别.经实验证明,本文方法AUC值在0.95以上,可以实现对电力用户窃电行为精准识别.
Identification of Electricity Consumers'Electricity Theft Behavior Based on K-MEANS Clustering of Electricity Metering Data
Due to the poor application of the current method in the identification of power theft behavior of power users,the AUC value is relatively low and cannot achieve the expected identification effect.Aiming at the deficiencies and defects of the current methods,this paper proposes the identification of electricity theft behavior of power users based on K-MEANS clustering of electric energy metering data.The use of ETL technology for energy metering data load data extraction,using K-MEANS clustering algorithm for data clustering analysis,diagnosis and identification of user power theft,so as to achieve the identification of power theft based on energy metering data K-MEANS clustering of power users.Experimentally proved that the AUC value of this method is above 0.95,which can realize the accurate identification of power theft behavior of power users.

electricity metering dataK-MEANS clusteringelectricity theft behaviorETL technologyload data

山博、蒋佳辰

展开 >

国网陕西省电力有限公司西咸新区供电公司泾河新城供电分公司,西安 713700

电能计量数据 K-MEANS聚类 窃电行为 ETL技术 负荷数据

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(12)