首页|ReaxFF-nn机器学习势模型在LAMMPS中实现的C++程序设计

ReaxFF-nn机器学习势模型在LAMMPS中实现的C++程序设计

扫码查看
本文介绍了在LAMMPS中实现ReaxFF-nn(神经网络)机器学习势模型的C++程序设计。LAMMPS是美国Sandia国家实验室开发的一款大规模分子动力学并行计算模拟软件,具有计算效率高、包含势场多的优点,且代码开源,具备良好的并行扩展性。ReaxFF是基于键级的反应力场。本工作在LAMMPS中ReaxFF模块的基础上使用神经网络对键级和键能方程进行重新设计,形成了机器学习势ReaxFF-nn。本文详细阐释了ReaxFF-nn的基本原理以及其在LAMMPS中实现的程序设计流程,包括读取输入数据、初始化神经网络的参数、计算原子间键能以及键级的函数等步骤。通过示例模拟,验证了通过ReaxFF-nn计算的准确性和可靠性。
C++Programming for ReaxFF-nn Machine Learning Potential Model Implementation in LAMMPS
This paper introduces the C++programming of ReaxFF-nn(neural network)machine learning potential model in LAMMPS,a large-scale molecular dynamics parallel computational simulation software developed by Sandia National Laboratories in the U.S.A.It has the advantages of high computational efficiency,many potential fields,and open source code with good parallel scalability.ReaxFF is based on bond-level reaction force fields.In this work,the bond level and bond energy equations are redesigned using neural network on the basis of ReaxFF module in LAMMPS to form the machine learning potential ReaxFF-nn.This paper explains in detail the basic principle of ReaxFF-nn and the programming flow of its implementation in LAMMPS,including reading input data,initializing the parameters of the neural network,calculating the inter-atomic bond energies as well as functions of bond levels,and other steps.The accuracy and reliability of the calculations via ReaxFF-nn are verified through example simulations.

molecular dynamicsReaxFF-nnLAMMPSmachine learningreaction force field

叶中豪、解德欣、李明、宋云岳、刘建鹏

展开 >

聊城大学物理科学与信息工程学院,山东 聊城 252000

分子动力学 ReaxFF-nn LAMMPS 机器学习 反应力场

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(13)