首页|基于改进YOLOv5s模型的SC-171边缘设备搭载番茄斑萎病毒病害的检测

基于改进YOLOv5s模型的SC-171边缘设备搭载番茄斑萎病毒病害的检测

扫码查看
作物生长过程中的实时状态监测对保障作物生产至关重要,特别是针对茄科作物普遍存在的番茄斑萎病毒病害。本研究旨在提出一种基于改进的YOLOv5s模型的SC-171边缘设备搭载番茄斑萎病毒病害的检测方法。在相同试验条件下,与通用的YOLOv5模型相比,此方法提高了查准率P、查全率R、F1分数、平均识别准确率mAP0。5和mAP0。5:0。95分别达到1。40%、2。80%、1。86%、1。30%和3。40%。该算法在提高识别精度的同时保持了较高的运算速度,满足了边缘检测设备对番茄斑萎病毒病的检测。
Detection of Tomato Spotted Wilt Virus Disease Piggybacked on SC-171 Edge Device Based on Improved YOLOv5s Modeling
Real-time status monitoring during crop growth is crucial to safeguard crop production,especially for tomato spotted wilt virus disease,which is prevalent in tomato crops.The aim of this study is to propose a detection method for tomato spotted wilt virus disease onboard SC-171 edge devices based on the improved YOLOv5s model.Under the same test conditions,our method improves the detection accuracy P,detection completeness R,F1 score,and average recognition accuracy mAP0.5 and mAP0.5:0.95 up to 1.40%,2.80%,1.86%,1.30%,and 3.40%,respectively,compared with the generalized YOLOv5 model.The algorithm maintains a high computing speed while improving the recognition accuracy,which satisfies the detection of tomato spotted wilt virus disease by edge detection equipment.

tomato disease recognitionYOLOv5sedge detectionSC-171

宁振国、曾熊钢、陈圣杰

展开 >

南京工业大学浦江学院,南京 211222

番茄病害识别 YOLOv5s 边缘检测 SC-171

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(13)