首页|基于语义分割技术的牲畜检测方法研究

基于语义分割技术的牲畜检测方法研究

扫码查看
三江源地区的草场资源丰富,但由于过度放牧的原因,近年来退化严重.牛羊在这一地区是重要的养殖牲畜,传统的检测方法对牛羊数量的统计存在难度大、效率低等问题,且其准确性易受到牛羊姿态和人为主观因素的影响.本研究基于上述问题以门源种马场等地区为研究区域,实地采集数据,采用YOLOv5算法对牛羊进行检测,满足检测实时性较高的要求.通过试验对比Adam、AdamW和SGD三种优化器的效果以提高识别和计数的准确性.
Research on Livestock Detection Method Based on Semantic Segmentation Technology
The grassland resources in the Sanjiangyuan area are abundant,but due to overgrazing,they have been severely degraded in recent years.Cattle and sheep are important livestock for breeding in this region.Traditional detection methods have difficulties and low efficiency in counting the number of cattle and sheep,and their accuracy is easily affected by the posture of cattle and sheep and subjective human factors.Based on the above issues,this study takes the Menyuan Horse Breeding Farm and other areas as the research area,collects data on site,and uses the Yolov5 algorithm to detect cattle and sheep,meeting the requirements of high real-time detection.Compare the effects of Adam,AdamW,and SGD optimizers through experiments to improve the accuracy of recognition and counting.

the three rivers source areacounting of cattle and sheepYOLOv5 algorithmobject detection

牛嘉骏、李春梅、张玉安

展开 >

青海大学计算机技术与应用系,西宁 810016

青海理工大学(筹)计算机与信息科学学院,西宁 810000

三江源地区 牛羊计数 YOLOv5算法 目标检测

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(13)