首页|基于深度强化学习的网络攻击检测与防御策略研究

基于深度强化学习的网络攻击检测与防御策略研究

扫码查看
深度强化学习(Deep Reinforcement Learning,DRL)作为一种前沿的人工智能技术,开始在越来越多的领域展现出了强大的决策优化能力,特别是应用于解决复杂、动态且具有一定不确定性的环境问题方面,深度强化学习无疑具有巨大优势.在当前复杂的网络环境下,网络攻击手段的多样化和技术的日益复杂,传统的静态、预设的防御策略已难以有效应对瞬息万变的网络安全威胁.因此,深入探索并实施一种能够动态适应、灵活调整且具备持续学习能力的网络防御机制逐渐成为网络安全研究的关键课题.基于此,本研究围绕深度强化学习技术发展动态,探讨了基于深度强化学习的网络攻击检测与防御策略,仅供参考与借鉴.
Research on Network Attack Detection and Defense Strategies Based on Deep Reinforcement Learning
Deep Reinforcement Learning(DRL),as a cutting-edge artificial intelligence technology,has begun to show powerful decision-making and optimization capabilities in more and more fields in recent years,especially when it is applied to solving complex,dynamic and uncertain environmental problems,Deep Reinforcement Learning undoubtedly has a huge advantage.In the current complex network environment,the diversification of network attack methods and the increasing complexity of technology,the traditional static,predefined defense strategy has been difficult to effectively respond to the rapidly changing network security threats.Therefore,in-depth exploration and implementation of a network defense mechanism that can dynamically adapt,flexibly adjust,and has the ability of continuous learning has gradually become a key topic in network security research.Based on this,this study focuses on the development of deep reinforcement learning technology,discusses the network attack detection and defense strategy based on deep reinforcement learning,for reference and reference only.

network attack detectiondefense strategydeep learningnetwork security

赵丹

展开 >

辽宁省农业经济学校,辽宁 锦州 121000

网络攻击检测 防御策略 深度学习 网络安全

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(13)