首页|基于BOWA-MCNN-BIGRU-Attention的短期风电功率预测模型

基于BOWA-MCNN-BIGRU-Attention的短期风电功率预测模型

扫码查看
本项目针对当前电网负荷预报中因极端气候导致的风机出力急剧变化这一科学问题,拟采用多尺度卷积神经网络与双向选通神经网络相结合的方法,建立一种新的风力发电短时预报模型.利用"黑蜘蛛"优化方法,实现对网络的超参参数的自适应调整,从而有效克服了在恶劣气象环境下模式的准确性受到影响的难题.试验证明,该方法与传统方法相比,该方法的预报准确率更高,推广性更好.
Short-term Wind Power Prediction Model Based on BOWA-MCNN-BIGRU-Attention
This project aims to establish a new short-term forecast model for wind power generation by combining multi-scale convolutional neural network and bidirectional selective neural network to address the scientific problem of drastic change of wind turbine power due to extreme climate in the current grid load forecasting.The"black spider"optimization method is used to realize the adaptive adjustment of the super-parameters of the network,which effectively overcomes the problem of the model's accuracy being affected by the severe meteorological environment.It is proved that this method has higher forecasting accuracy and better generalization compared with the traditional method.

wind powergrid loadwind turbinemulti-scale convolutional neural networktwo-way selective energy neural network

刘祎、庄洁薇、刘恒佚、朱剑勋、赵思宇

展开 >

南京工程学院,南京 211167

风电 电网负荷 风机 多尺度卷积神经网络 双向选择能神经网络

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(13)