首页|基于度量学习与变分自编码器的电力负荷数据增强算法研究

基于度量学习与变分自编码器的电力负荷数据增强算法研究

扫码查看
在电力时间序列数据领域,受限于隐私保护、数据规模小及不平衡等问题,传统模型在此类数据集上的训练面临显著挑战.为此,本文提出一种结合变分自编码器(Variational Autoencoder,VAE)与度量学习的新型时间序列数据生成框架.该方法通过度量学习构建判别式VAE潜在空间,以提升数据增强的有效性;同时,利用时间序列趋势分解算法,注入原始数据结构以增强生成数据的可解释性.实验结果表明,与现有SOTA方法相比,该算法在数据生成质量与模型性能上均表现优异,平均速度提升37.45%,显著降低数据采集与标注成本,具有跨领域时间序列数据应用的潜力.
Research on Power Load Data Enhancement Algorithm Based on Metric Learning and Variational Autoencoder
In the field of power time series data,the training of traditional models on such datasets faces significant challenges due to issues such as privacy protection,small data size and imbalance.To this end,this paper proposes a novel time series data generation framework that combines Variational Autoencoder(VAE)with metric learning.The method constructs discriminative VAE potential space through metric learning to enhance the effectiveness of data augmentation;meanwhile,it utilizes a time series trend decomposition algorithm to inject the original data structure to enhance the interpretability of the generated data.The experimental results show that compared with the existing SOTA methods,the algorithm excels in both data generation quality and model performance,with an average speedup of 37.45%,significantly reduces the cost of data collection and labeling,and has the potential for cross-domain time series data applications.

electricity time series datavariational autoencodermetric learningtime series decomposition

蒋晓丽、章倩、卿瑶瑶

展开 >

广州软件学院,广州 510000

中国船舶集团有限公司第七〇四研究所,上海 200000

电力时间序列数据 变分自编码器 度量学习 时间序列分解

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(15)