首页|基于传统数据库ORACLE的分类迭代SQL的生成

基于传统数据库ORACLE的分类迭代SQL的生成

扫码查看
本文深入剖析了任务本质及其子任务处理机制,解决了中文文本中列名歧义、查询描述多变及数据库数据表达差异等问题.NL2SQL研究分为管道法与深度学习法.管道法先转文本为表达式,再映射为SQL,但受限于模板与规则,难以灵活处理语言差异.深度学习通过统计学习,将SQL生成转化为序列或分类任务,更有效地捕捉复杂语义,提高处理自然语言查询的灵活性与准确性.本文创新性地将SQL生成转化为分类任务,利用预训练模型微调分类器,并成功迁移和改进英语nl2sql模型至汉语环境.实验证明,此方法显著提升SQL生成精度和结果的准确性.
Generation of Iterative SQL for Classification Based on Traditional Database ORACLE
This paper deeply analyzes the task essence and its sub-task processing mechanism,and solves the problems of column name ambiguity,variable query descriptions,and database data expression differences in Chinese text.NL2SQL research is categorized into pipeline method and deep learning method.Pipeline method converts text to expression and then maps it to SQL,but it is limited by templates and rules,which makes it difficult to deal with language differences flexibly.Deep learning transforms SQL generation into sequence or classification tasks through statistical learning,which captures complex semantics more effectively and improves the flexibility and accuracy of processing natural language queries.In this paper,we innovatively transform SQL generation into a classification task,fine-tune the classifier using a pre-trained model,and successfully migrate and improve the English nl2sql model to the Chinese environment.Experiments demonstrate that this method significantly improves the precision of SQL generation and the accuracy of results.

databaseORACLESQLNL2SQLdeep learning methodnatural language

朱子熹、郑淇鸿

展开 >

福州烟草信息中心,福州 350000

数据库 ORACLE SQL NL2SQL 深度学习法 自然语言

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(15)