首页|雾化过程中的大数据解析与参数动态监测

雾化过程中的大数据解析与参数动态监测

扫码查看
本论文探讨了雾化过程中的大数据解析与参数动态监测技术。首先,分析了数据获取技术,强调了传感器和数据采集系统在实时监测中的重要性。其次,讨论了多种数据分析方法,包括回归分析、时间序列分析和机器学习模型。进一步地,确定了关键参数,如操作压力、液体温度和流量速率,并探讨了动态监测对雾化效果的影响。研究结果表明,动态监测技术显著提高了雾化设备的效率和产品的质量,对相关行业具有重要的实际意义。
Big Data Parsing and Dynamic Monitoring of Parameters During Atomization Process
This thesis discusses the big data analysis and parameter dynamic monitoring techniques in the fogging process.First,data acquisition techniques are analyzed,emphasizing the importance of sensors and data acquisition systems in real-time monitoring.Second,a variety of data analysis methods are discussed,including regression analysis,time series analysis,and machine learning models.Further,key parameters,such as operating pressure,liquid temperature,and flow rate,were identified,and the effect of dynamic monitoring on atomization effectiveness was explored.The results show that the dynamic monitoring technique significantly improves the efficiency of the atomization equipment and the quality of the product,which is of great practical significance to the related industries.

atomization processbig data analysisparameter dynamic monitoringdata acquisition technologydata analysis methods

张昂、周小飞

展开 >

中国电建集团中南勘测设计研究院有限公司,长沙 410014

雾化过程 大数据解析 参数动态监测 数据获取技术 数据分析方法

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(16)