首页|基于深度卷积神经网络的无人机射频信号探测识别与提取分类研究

基于深度卷积神经网络的无人机射频信号探测识别与提取分类研究

扫码查看
为实现高空环境中无人机信号的实施探测识别、多时刻信号谱图的任务调度,提出基于深度卷积神经网络算法的无人机射频信号识别方案,由无人机侦测基站搜索与截获300KHz~30GHz频率范围内的射频(Radio Frequency,RF)信号,运用短时傅里叶变换函数将无人机时频域信号作出加窗划分、平方幅值的信号谱图计算,使用Haar小波变换的滤波分析法、滤除频谱内的信号中低频或高频噪声信号,并将数据预处理后的信号输入多分支卷积神经网络(Convolutional Neural Networks,CNN)模型,合理设置多尺寸的卷积核、全局卷积层、池化层等层级,作出无人机射频信号特征下的采样识别训练集提取计算,以实现复杂电磁环境下无人机信号频谱图探测识别效率、准确率和环境抗干扰能力的提升。
Deep Convolutional Neural Network-based Recognition and Extraction Classification Research for UAV RF Signal Detection and Classification
In order to realize the implementation of the detection and identification of UAV signals in the high-altitude space environment and the task scheduling of multi-moment signal spectrograms,a UAV RF signal identification scheme based on the deep convolutional neural network algorithm is proposed,in which the UAV detection base station searches for and intercepts the RF signals within the frequency range of 300KHz~30GHz,and applies the short-time Fourier transform function to classify the UAV time-frequency domain signals with windowing,squaring,and extraction.Function of the UAV time-frequency domain signal to make a window division,square amplitude of the signal spectrogram calculation,the use of Haar wavelet transform filtering analysis method,filtering out low-frequency or high-frequency noise signals within the spectrum of the signal,and data preprocessing of the signal into the multi-branch convolutional neural networks(Convolutional Neural Networks,CNN)model,reasonable setup of multiple size convolutional kernel,global convolutional layer,pooling layer and other layers,to make downsampling recognition training set extraction calculation of UAV RF signal features,in order to realize the improvement of the detection and recognition efficiency,accuracy and environmental anti-interference ability of the UAV signal spectrogram detection and recognition in the complex electromagnetic environment.

deep convolutional neural networkUAV RF signaldetection and identificationtask scheduling

黄黎明

展开 >

中电科特种飞机系统有限公司,成都 643020

深度卷积神经网络 无人机射频信号 探测识别 任务调度

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(16)