首页|基于贝叶斯网络的低压台区终端故障诊断技术在线损应用中的研究

基于贝叶斯网络的低压台区终端故障诊断技术在线损应用中的研究

扫码查看
本文研究了低压台区的线损问题,结合决策树和贝叶斯网络的方法,对线损影响因素进行了系统分析。首先,基于历史数据,通过决策树模型提取出主要影响因素,并建立了线损与这些因素之间的关系。随后,采用贝叶斯分布对模型进行参数估计和不确定性分析,增强了线损预测的精确性和可靠性。实验结果表明,结合决策树与贝叶斯方法能够有效识别线损的关键因素,并在不同运行条件下提供准确的线损预测,为低压台区的管理和优化提供了重要依据。本研究的结论为电力系统的运行维护和经济调度提供了新的思路,具有一定的应用价值。
Bayesian Network-based Terminal Fault Diagnosis Technology for Low-voltage Station Area in Online Loss Application
This study analyzed the line loss in low-voltage distribution areas using decision trees and Bayesian networks.Initially,key influencing factors were identified from historical data through a decision tree model,establishing their relationships with line loss.Then,Bayesian distributions refined model parameters and uncertainty,enhancing prediction accuracy and reliability.Results show this hybrid approach effectively pinpoints critical loss factors and offers precise forecasts under varying conditions,crucial for management and optimization.The findings offer novel insights into power system operation,maintenance,and economic dispatch,demonstrating practical value.

Transformer area line losselectricity stealing dataBayesian network

渠智毅、李鹏程、陈庆辉、宋强、王俊融

展开 >

贵州电网有限责任公司,贵阳 550002

台区线损 窃电用电数据 贝叶斯网络

2024

数码设计

数码设计

ISSN:1672-9129
年,卷(期):2024.(16)