首页|基于新陈代谢GM(1,1)++的疫情应急物资需求量预测研究

基于新陈代谢GM(1,1)++的疫情应急物资需求量预测研究

扫码查看
当大规模疫情发生时,应急物资的供给至关重要.在新陈代谢GM(1,1)模型的基础上提出了一种新陈代谢GM(1,1)++模型,即再加入新信息,移除原始数据中的旧信息的同时,将原始数据中与拟合值相对残差最大的数据项用拟合值替代.提出的方法既能够及时去掉意义逐渐降低的老信息,加入更能够反应系统目前特征的新信息,又能够降低其他因素对原始数据的扰动性,使原始数据更具规律性.为了检验新陈代谢GM(1,1)++模型的有效性,将其预测结果分别与传统GM(1,1)、新信息GM(1,1)、新陈代谢GM(1,1)的预测结果进行比较研究.试验结果显示,新陈代谢GM(1,1)++模型的误差平方和最小,预测准确性远优于另外3种预测模型.
Prediction of emergency supplies demand based on Metabolism GM(1,1)++
When large outbreaks occur,the availability of emergency supplies is critical.Based on the metabolism GM(1,1)++model,this paper proposes a metabolism GM(1,1)++model,that is,new information is added,old information is removed from the original data,and data items with the largest relative residual difference between the original data and the fitting value are replaced by the fitting value.The method proposed in this paper can not only timely remove the old information with decreasing significance,but also add new information which can better reflect the current characteristics of the system,but also reduce the disturbance of other factors to the original data,so that the original data is more regular.In order to test the effectiveness of metabolism GM(1,1)++model,the prediction results were compared with those of traditional GM(1,1),new information GM(1,1)and metabolism GM(1,1)respectively.The experimental results show that the metabolism GM(1,1)++model has the smallest sum of squared errors,and the prediction accuracy is much better than the other three prediction models.

GM(1,1)grey prediction modelprediction modelemergency supplies

王庆荣、张慈仁

展开 >

兰州交通大学电子与信息工程学院,甘肃兰州 730070

GM(1,1) 灰色预测模型 预测模型 应急物资

国家自然科学基金教育部人文社会科学研究规划基金甘肃省自然科学基金甘肃省自然科学基金

7196101618YJAZH14820JR10RA21220JR10RA214

2024

商丘师范学院学报
商丘师范学院

商丘师范学院学报

CHSSCD
影响因子:0.211
ISSN:1672-3600
年,卷(期):2024.40(6)
  • 11