首页|基于改进YOLOv5的道路场景小目标检测方法

基于改进YOLOv5的道路场景小目标检测方法

扫码查看
自动驾驶中的目标检测作为现今计算机视觉的基础任务之一,近年来受到了人们的广泛关注,而道路场景的目标检测与识别又是自动驾驶中最核心的模块之一。YOLOv5(YOLO-YouOnly Look Once)目标检测算法常用于对车辆行驶过程中的道路场景目标进行检测和识别,该算法通常可以获得优异的检测速度,但在检测精度上却差强人意。基于YOLOv5模型进行改进,针对损失函数CIoU可能会导致梯度爆炸的问题,将损失函数由CIoU改为EIoU,使得检测准确性有所提高;运用多尺度特征融合的方法加入超小检测头模块,将原始网络模型从3检测头变为4检测头,并通过K-means聚类方法,选取了三个最适合数据集的候选框大小,解决了原始模型对微小目标检测不准确的问题。在VisDrone2019数据集上进行训练,最终模型网络的mAP-50可以达到42。8%,相比于原始模型提升了7。6%,实验结果表明提出的方法相较于YOLOv5原始模型更适用于道路场景的目标检测与识别任务。
Road scene small target detection method based on modified YOLOv5
Target detection in autonomous driving has received much attention in recent years as one of the basic tasks of computer vision,and target detection and recognition in road scenes is one of the most core modules in autonomous driving.The YOLOv5(YOLO-You Only Look Once)target detection algorithm is commonly used to detect and recognize the targets in road scenes during vehicle driving,and the algorithm usually achieves excellent detection speed but poor detection accuracy.The algorithm usually obtains excellent detection speed,but the detection accuracy is not satisfactory.Based on the YOLOv5 model,the loss function CIoU is changed from CIoU to EIoU,which improves the detection accuracy,and the multi-scale feature fusion method is used to add the ultra-small detection head module,which changes the original network model from 3 to 4 detection heads,and the three most suitable candidate box sizes for the dataset are selected by K-means clustering method.suitable candidate frame sizes for the dataset,solving the problem of inaccurate detection of tiny targets by the original model.Trained on the VisDrone2019 dataset,the mAP-50 of the final model network can reach 42.8%,which is improved by 7.6%compared with the original model,and the experimental results show that the proposed method is more suitable for the task of target detection and recognition in the road scene compared with the original model of YOLOv5.

deep learningtarget detectionYOLOv5road sceneautopilot

徐鸿盛、胡学友、黄迎辉、杨然、施晓、祝方舟、赵森林

展开 >

合肥大学先进制造工程学院,安徽 合肥 230601

蚌埠学院计算机与信息工程学院,安徽蚌埠 233030

深度学习 目标检测 YOLOv5 道路场景 自动驾驶

2024

商丘师范学院学报
商丘师范学院

商丘师范学院学报

CHSSCD
影响因子:0.211
ISSN:1672-3600
年,卷(期):2024.40(12)