首页|数据驱动的自我调节学习动态评价模型研究

数据驱动的自我调节学习动态评价模型研究

扫码查看
对学习者自我调节学习过程的准确评价,是实现教学干预的必要前提.然而,已有评价方法多为总结性评价,实时性不足.为此,本研究提出了数据驱动的自我调节学习动态评价模型.以学习任务为单位对学习过程进行时序化处理,并构建学习过程中生成性数据到自我调节学习状态的映射关系.研究结果表明:(1)生成性数据是评价学习者自我调节学习状态的有力因素,模型具有较高的有效性.(2)学习者的自我调节学习状态在不同评价维度呈现出差异性变化趋势,其中任务分析、自我激励的信念和自我观察维度趋于稳定,而自我控制、自我判断和自我反应3个维度呈现明显波动性变化.(3)高低绩效群体在自我激励的信念、自我控制和自我反应3个评价维度上表现出显著差异,而在任务分析、自我观察和自我判断有3个维度上没有统计学差异.
A Study of a Data-Driven Dynamic Evaluation Model for Self-Regulated Learning
Accurate evaluation of learners'self-regulated learning process is a necessary prerequisite for the realization of pedagogical interventions.However,most of the existing evaluation methods are summative and insufficient in real time.For this reason,the study proposes a data-driven dynamic evaluation model of self-regulated learning.The learning process is temporalized in terms of learning tasks,and the mapping of generative data to self-regulated learning states is constructed in the learning process.The results of the study show that:(1)Generative data is a powerful factor in evaluating learners'self-regulated learning state,and the model has high validity.(2)The learners'self-regulated learning state shows a trend of differential changes in different evaluation dimensions,in which the dimensions of task analysis,self-motivated beliefs and self-observation tend to be stable,while the three dimensions of self-control,self-judgement,and self-response show obvious fluctuating changes.(3)The high and low performance groups show significant differences in the three evaluation dimensions of self-motivated beliefs,self-control and self-reaction,while there are no statistical differences in the three dimensions of task analysis,self-observation and self-judgment.

Self-regulated learningGenerative dataMetrics systemArtificial intelligenceLearning analytics

孔维梁、张俊凯、韩淑云、叶海智

展开 >

河南师范大学 教育学部,河南 新乡 453007

华中师范大学 人工智能教育学部,湖北 武汉 430079

自我调节学习 生成性数据 指标体系 人工智能 学习分析

国家自然科学基金河南省重点研发与推广专项科技攻关项目河南省教育科学规划课题河南省哲学社会科学规划项目

620770202221023202882021YB00772021BJY021

2024

数字教育

数字教育

ISSN:
年,卷(期):2024.10(1)
  • 12