首页|基于超分辨成像增强对拟南芥内质网动态变化的研究

基于超分辨成像增强对拟南芥内质网动态变化的研究

扫码查看
[目的]为了解决在植物细胞内质网的研究中,成像速度与成像分辨率难以同时满足准确识别精细结构和动态变化的瓶颈问题.[方法]使用结构光照明显微成像技术,对拟南芥活体材料中的内质网进行超分辨实时成像,并优化了自监督去噪框架(Blind2Unblind),以进一步提升快速显微成像的信噪比.[结果]建立了对时间序列成像中内质网结构进行定量分析的方法,并通过对环境胁迫下内质网结构动态变化的追踪进一步验证了方法的有效性.此外,各类参数的相关性分析显示管状内质网的面积和长度与生长端和三叉点的数量显著正相关,而内质网池和整体流的面积与管的面积和长度显著负相关.[结论]优化的自监督去噪框架提升了植物活细胞中结构光照明显微图像的信噪比,实现了管状内质网、内质网池、整体流、生长端和节点等复杂结构和动态的量化,各结构间存在复杂相关性.
Dynamic Changes of Arabidopsis Endoplasmic Reticulum Based on Enhanced Super-resolution Images
[Objective]This work is to solve the bottleneck of accurately identifying fine structures,and dynamic changes cannot be concurrently met by imaging speed and imaging resolution in the study of plant cell endoplasmic reticulum.[Method]This study employed structured illumination microscopy techniques to achieve super-resolution real-time imaging of the ER in live Arabidopsis materials.Additionally,a self-supervised denoising framework(Blind2Unblind)was optimized to further enhance the signal-to-noise ratio of rapid microscopic imaging.[Result]Based on the images with high quality,a method for quantitative analysis of ER structures using time-lapse images was established.Moreover,detections of changes in ER structures under environmental stress were conducted to verify the effectiveness of the method.Moreover,correlation analyses of various parameters indicated a significantly positive correlation between the area,length of tubular ER and the number of growth tips and three-way junctions,while the area of ER cisternae and bulk flow had a significantly negative correlation with the area and length of tubules.[Conclusion]The optimized self-supervised denoising framework in this study improves the signal-to-noise ratio of images with structure illumination microscopy in living plant cells,enabling the quantification of complex structures and dynamics,such as tubular ER,cisternae in ER,bulk flow,growth tips,and nodes,with complex correlations among the structures.

Arabidopsis thalianaendoplasmic reticulumdynamicssuper-resolution imagingimage enhancementquantitative analysis

张以恒、刘家正、王雪晨、孙政哲、薛雅郡、汪沛、韩华、郑宏伟、李晓娟

展开 >

北京林业大学理学院 林木资源高效生产全国重点实验室,北京 100083

北京林业大学生物科学与技术学院 林木、花卉遗传育种教育部重点实验室,北京 100083

北京林业大学生物科学与技术学院 林木育种与生态修复国家工程研究中心,北京 100083

中国科学院自动化研究所多模态人工智能系统全国重点实验室,北京 100190

中国科学院大学未来技术学院,北京 100049

脑认知功能图谱与类脑智能交叉研究平台,北京 101499

华中科技大学计算机科学与技术学院,武汉 430074

中国科学院新疆生态与地理研究所,乌鲁木齐 830001

展开 >

拟南芥 内质网 动态 超分辨率成像 成像增强 量化分析

国家自然科学基金国家自然科学基金国家自然科学基金新疆综合科考项目(第三次)SunTrust Banks 2030-大型项目SunTrust Banks 2030-大型项目北京林业大学科技创新计划

9195420231871349321714612022xikk12002021ZD02045002021ZD02045032019J003003

2024

生物技术通报
中国农业科学院农业信息研究所

生物技术通报

CSTPCD北大核心
影响因子:0.505
ISSN:1002-5464
年,卷(期):2024.40(4)
  • 31