首页|基于第二心音统计特征的先天性心脏病相关肺动脉高压诊断方法

基于第二心音统计特征的先天性心脏病相关肺动脉高压诊断方法

扫码查看
针对先天性心脏病相关肺动脉高压听诊特征不明显,已有的机器辅助诊断算法相对复杂等问题,提出一种基于第二心音信号高频分量统计特征的分析方法.首先,采用端点检测自适应分割方法提取第二心音.其次,使用离散小波变换分解出高频分量,并提取该分量的赫斯特(Hurst)指数、勒佩尔-齐夫(Lempel-Ziv)信息和样本熵等统计特征.最后,使用这些特征训练极端梯度提升算法(XGBoost)分类器,在三分类中准确率达到了 80.45%.该方法无需进行降噪处理,特征提取速度快,且只需三个特征即可实现较好的多分类效果,有望用于先天性心脏病相关肺动脉高压早期筛查.
Diagnosis of pulmonary hypertension associated with congenital heart disease based on statistical features of the second heart sound
Aiming at the problems of obscure clinical auscultation features of pulmonary hypertension associated with congenital heart disease and the complexity of existing machine-aided diagnostic algorithms,an algorithm based on the statistical characteristics of the high-frequency components of the second heart sound signal is proposed.Firstly,an endpoint detection adaptive segmentation method is employed to extract the second heart sounds.Subsequently,the high-frequency component of the heart sound is decomposed using the discrete wavelet transform.Statistical features including the Hurst exponent,Lempel-Ziv information and sample entropy are extracted from this component.Finally,the extracted features are utilized to train an extreme gradient boosting algorithm(XGBoost)classifier,which achieves an accuracy of 80.45%in triple classification.Notably,this method eliminates the need for a noise reduction algorithm,allows for swift feature extraction,and achieves effective multi-classification using only three features.It is promising for early screening of pulmonary hypertension associated with congenital heart disease.

Heart soundCongenital heart diseasePulmonary arterial hypertensionHigh-frequency componentsStatistical featuresExtreme gradient boosting algorithm

杨炫锴、孙静、杨宏波、郭涛、潘家华、王威廉

展开 >

云南大学信息学院(昆明 650504)

昆明医科大学附属心血管病医院(昆明 650102)

云南省阜外心血管病医院(昆明 650102)

心音 先天性心脏病 肺动脉高压 高频分量 统计特征 极端梯度提升算法

国家自然科学基金资助项目2018云南省重大科技专项资助项目

819600672018ZF017

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(1)
  • 24