首页|基于多尺度残差收缩U-Net的胎儿心电信号提取

基于多尺度残差收缩U-Net的胎儿心电信号提取

扫码查看
针对在胎儿心电信号提取中,U-Net同级卷积编码器尺度的单一性忽略了母亲和胎儿心电特征波的大小和形态差异,且当残差收缩模块作为编码器的阈值学习过程中缺少对心电信号时间信息利用的问题,本文提出一种基于多尺度残差收缩U-Net模型的胎儿心电信号提取方法.首先在残差收缩模块中引入Inception和时间域注意力,增强同级卷积编码器的胎儿心电信号多尺度特征提取能力和时间域信息的利用;为了保持更多的心电波形局部细节特征,将U-Net中的最大池化替换为Softpool;最后,由残差模块和上采样构成的解码器逐步生成胎儿心电信号.本文应用临床心电信号进行实验,最终结果表明:与其他胎儿心电提取算法相比,本文方法可以提取更为清晰的胎儿心电信号,在2013年竞赛数据集上灵敏度、阳性预测值和F1分数分别达到93.33%、99.36%、96.09%.因此本文方法可以有效提取胎儿心电信号,为围产期胎儿健康监护提供了一种具有应用价值的方法.
Fetal electrocardiogram signal extraction based on multi-scale residual shrinkage U-Net
In the extraction of fetal electrocardiogram(ECG)signal,due to the unicity of the scale of the U-Net same-level convolution encoder,the size and shape difference of the ECG characteristic wave between mother and fetus are ignored,and the time information of ECG signals is not used in the threshold learning process of the encoder's residual shrinkage module.In this paper,a method of extracting fetal ECG signal based on multi-scale residual shrinkage U-Net model is proposed.First,the Inception and time domain attention were introduced into the residual shrinkage module to enhance the multi-scale feature extraction ability of the same level convolution encoder and the utilization of the time domain information of fetal ECG signal.In order to maintain more local details of ECG waveform,the maximum pooling in U-Net was replaced by Softpool.Finally,the decoder composed of the residual module and up-sampling gradually generated fetal ECG signals.In this paper,clinical ECG signals were used for experiments.The final results showed that compared with other fetal ECG extraction algorithms,the method proposed in this paper could extract clearer fetal ECG signals.The sensitivity,positive predictive value,and F1 scores in the 2013 competition data set reached 93.33%,99.36%,and 96.09%,respectively,indicating that this method can effectively extract fetal ECG signals and has certain application values for perinatal fetal health monitoring.

Deep learningFetal electrocardiogram signal extractionDeep residual shrinkage networkSoft pool

王乾、张正旭、宋丹洋、王玉静、宋立新

展开 >

哈尔滨理工大学 计算机科学与技术学院(哈尔滨 150080)

哈尔滨理工大学 测控技术与通信工程学院(哈尔滨 150080)

黑龙江中医药大学附属第二医院(哈尔滨 150001)

深度学习 胎儿心电信号提取 深度残差收缩网络 软池化

国家自然科学基金

51805120

2024

生物医学工程学杂志
四川大学华西医院 四川省生物医学工程学会

生物医学工程学杂志

CSTPCD北大核心
影响因子:0.432
ISSN:1001-5515
年,卷(期):2024.41(3)
  • 19